Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Ni(Co)-containing catalysts based on perovskite-like ferrites for steam reforming of ethanol

M. V. Arapova / S. N. Pavlova / V. A. Rogov / T. A. Krieger / A.V. Ishchenko / A.-C. Roger
Published Online: 2014-02-24 | DOI: https://doi.org/10.2478/cse-2014-0002


For two series of catalysts based on praseodymium ferrite, their structural and redox properties as well as performance in ethanol steam reforming have been studied. The first series was PrFe1-xNi(Co)xO3 (x=0.3-0.4) perovskites prepared by modified Pechini route, and the second one was 5%wt.Ni(Co)/PrFeO3 of different dispersion prepared by impregnation of PrFeO3, including samples modified by 5%wt. Mo. At temperatures above 700°C, for all catalysts, the main products were hydrogen and CO. At temperatures below 700°C, initial ethanol conversion and hydrogen yield were higher for supported catalysts as compared with ones derived from Ni(Co)-containing perovskites. While Ni-based catalysts derived from perovskite were more active as compared with Co-based samples, Co-supported PrFeO3 perovskite has shown a higher initial activity as compared with Ni-supported one. The long-term tests in the realistic feed and TEM studies of spent catalysts revealed that perovskite-derived catalysts have a higher coking stability than perovskite-supported ones due to formation of highly dispersed Ni-Fe alloy particles strongly interacting with disordered perovskite–like matrix. The method of Mo supporting only slightly affects the initial activity of Ni/PrFeO3–based catalysts but noticeably modifies their coking stability: 5%Mo/5%Ni/PrFeO3 catalyst prepared by successive impregnation possesses the highest stability among perovskite-supported catalysts.

Keywords: Ethanol steam reforming; nickel; cobalt; praseodimium ferrite; molybdenum


  • [1] Kirtay E., Energy Conversion and Management, 2011, 52, Recent advances in production of hydrogen from biomass, 1778-1789. Web of ScienceGoogle Scholar

  • [2] Tanksale A., Beltramini J. N., Lu G. M., A review of catalytic hydrogen production processes from biomass, Renew. Sustainable Energy Rev., 2010, 14, 166-182. Web of ScienceGoogle Scholar

  • [3] Chattanathan S. A., Adhikari S., Abdoulmoumine N., A review on current status of hydrogen production from bio-oil, Renew. Sustainable Energy Rev., 2012, 16, 2366-2372. Google Scholar

  • [4] Haryanto A., Fernando S., Murali N., and Adhikari S., Current status of hydrogen production techniques by steam reforming of ethanol: A review, Energy & Fuels, 2005, 19, 2098-2106. Google Scholar

  • [5] Vaidya P.D., Rodrigues A.E., Insight into steam reforming of ethanol to produce hydrogen for fuel cells, Chem. Eng. J., 2006, 117, 39-49. Google Scholar

  • [6] Yung M. M., Jablonski W. S., and Magrini-Bair K. A., Review of Catalytic Conditioning of Biomass-Derived Syngas, Energy & Fuels, 2009, 23, 1874-1887. Web of ScienceGoogle Scholar

  • [7] Slinn M., Kendall K., Mallon C., Andrews J., Steam reforming of biodiesel by-product to make renewable hydrogen, Bioresource Technology, 2008, 99, 5851-5858. Web of ScienceGoogle Scholar

  • [8] Basagiannis A. C., Verykios X. E., Reforming reactions of acetic acid on nickel catalysts over a wide temperature range, Appl. Catal. A Gen., 2006, 308, 182-193. Google Scholar

  • [9] Hu X., G. L., Investigation of the steam reforming of a series of model compounds derived from bio-oil for hydrogen production, Appl. Catal. B Environ., 2009, 88, 376-385. Google Scholar

  • [10] Fatsikostas A. N., Verykios X. E., Reaction network of steam reforming of ethanol over Ni-based catalysts, J. Catal., 2004, 225, 439-452. Google Scholar

  • [11] Batista M. S., Santos R. K. S., Assaf E. M., Assaf J. M., Ticianelli E. A., High efficiency steam reforming of ethanol by cobalt- based catalysts. J. Power Sources, 2004, 134, 27-32. Google Scholar

  • [12] Biswas P., Kunzru D., Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst, Chem. Eng. J., 2008, 136, 41-49. Google Scholar

  • [13] Lima S. M., Silva A. M., Costa L.O.O., Graham U. M., Burtron G. J., Davis H., Mattos L. V., Noronha F. B., Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J. Catal., 2009, 268, 268-281. CrossrefGoogle Scholar

  • [14] Costa L.O.O., Silva A. M., Noronha F. B., Mattos L.V., The study of the performance of Ni supported on gadolinium doped ceria SOFC anode on the steam reforming of ethanol, Int. J. Hydr. Energy, 2012, 37, 5930-5939. Google Scholar

  • [15] Liguras D. K., Kondarides D. I., Verykios X. E., Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Appl. Catal. B, 43, 2003, 345-354. Google Scholar

  • [16] Rioche C., Kulkarni S., Meunier F. C., Breen J. P., Burch R., Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts, Appl. Catal. B, 2005, 61, 130-139. Google Scholar

  • [17] Lima S.M., Silva A.M., Costa L.O.O., Graham U.M., Burtron G. J., Davis H., Mattos L.V., Noronha F.B., Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: Reaction mechanism and deactivation, Appl. Catal. A, 2009, 352, 95-113. Web of ScienceGoogle Scholar

  • [18] Wang F., Cai W., Provendier H., Schuurman Y., Descorme C., Mirodatos C., Shen W., Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion, 2011, 36, 13566-13574. Google Scholar

  • [19] Ramos A.C., Montini T., Lorenzut B., Troiani H., Gennari F.C., Graziani M., Fornasiero P., Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M = Ru, Pd, Ag) nanocomposites, Cat. Today, 2012, 180, 96-104. Google Scholar

  • [20] Kapokova L., Pavlova S., Bunina R., Alikina G., Krieger T., Ishchenko A., Rogov V.and Sadykov V., Dry reforming of methane over LnFe0.7Ni0.3O3−d perovskites: Influence of Ln nature, Catal. Today, 2011, 164, 227-233. Google Scholar

  • [21] Pavlova S., Kapokova L., Bunina R., Alikina G., Sazonova N., Krieger T., Ishchenko A., Rogov V., Gulyaev R., Sadykov V. and Mirodatos C., Syngas production by CO2 reforming of methane using LnFeNi(Ru)O3 perovskites as precursors of robust catalysts Catal. Sci. Technol., 2012, 2, 2099-2108. Web of ScienceGoogle Scholar

  • [22] Chen H., Yu H., Peng F., Yang G., Wang H., Yang J., Tang Y., Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3, Chem. Eng. J., 2010, 160, 333-339. Web of ScienceGoogle Scholar

  • [23] Lima S.M., Silva A.M., Costa L.O.O., Assaf J.M., Jacobs G., Davis B.H., Mattos L.V., Noronha F.B., Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol, Appl. Catal. A, 2010, 377, 181-190. Web of ScienceGoogle Scholar

  • [24] Chen S.Q., Wang H., Liu Y., Perovskite La–St–Fe–O (St=Ca, Sr) supported nickel catalysts for steam reforming of ethanol: The effect of the A site substitution, Int. J. Hydr. Energy, 2009, 34, 7995-8005. Google Scholar

  • [25] Chen S.Q., Li Y.D., Liu Y., Bai X., Regenerable and durable catalyst for hydrogen production from ethanol steam reforming, Int. J. Hydr. Energy, 2011, 36, 5849-5856. Google Scholar

  • [26] Lima S. M., Silva A. M., Costa L.O.O., Assaf J.M., Mattos L.V., Sarkari R., Venugopale A., Noronha F.B., Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides, Appl. Catal. B: Env., 2012, 121– 122, 1-9. Google Scholar

  • [27] Urasaki K., Tokunaga K., Sekine Y., Matsukata M., Kikuchi E., Production of hydrogen by steam reforming of ethanol over cobalt and nickel catalysts supported on perovskite-type oxides, Cat. Comm., 2008, 9, 600-604. Google Scholar

  • [28] York A. P. E., Suhartanto T.and Green M.L.H., Influence of molybdenum and tungsten dopants on nickel catalysts for the dry reforming of methane with carbon dioxide to synthesis gas, in: Parmaliana A. et al. (Eds), Studies in Surface Science and Catalysis, Elsevier Science, 1998, Vol. 119, p.777. Google Scholar

  • [29] Zhang A., Zhu A., Chen B., Zhang S., Au C., Shi C., In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane, Cat. Comm., 2011, 12, 803–807. Google Scholar

  • [30] Cheng J., Huang W., Effect of cobalt (nickel) content on the catalytic performance of molybdenum carbides in dry-methane reforming, Fuel Proc. Tech., 2010, 91, 185–193. Google Scholar

  • [31] Siahvashi A., Chesterfield D., Adesina A.A., Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst, Chem. Eng. Sci., 2013, 93, 313–325. Google Scholar

  • [32] R. Kumar, R. J. Choudhary, M. Ikram, D. K. Shukla and S. Mollah, P. Thakur and K. H. Chae, B. Angadi and W. K. Choi, Structural, electrical, magnetic, and electronic structure studies of PrFe1−xNixO3 (x<0.5), J. Appl. Phys., 2007, 102, 073707-1-9. Google Scholar

  • [33] Provendier H., Petit C., Estournes C., Libsa S., and Kiennemann A., Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition, Appl. Catal. A, 1999, 180, 163-173. Google Scholar

  • [34] Mas V., Kipreos R., Amadeo N., Laborde M., Thermodynamic analysis of ethanol/water system with the stoichiometric method, Int. J. Hydr. Energy, 2006, 31, 21-28Google Scholar

About the article

Received: 2013-10-16

Accepted: 2013-12-09

Published Online: 2014-02-24

Citation Information: Catalysis for Sustainable Energy, Volume 2, Issue 1, Pages 10–20, ISSN (Online) 2084-6819, DOI: https://doi.org/10.2478/cse-2014-0002.

Export Citation

©2014 Arapova M.V. et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in