Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Use of Natural Nanotubes of Halloysite Clay for Thermochemical Conversion of Cottonseed Oil

T.A. Mammadova
  • Corresponding author
  • Y.H. Mammadaliyev name Institute of Petrochemical Processes. ANAS, Baku Az1025, Baku Ave Khojaly 30
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N.V. Hasankhanova
  • Corresponding author
  • Y.H. Mammadaliyev name Institute of Petrochemical Processes. ANAS, Baku Az1025, Baku Ave Khojaly 30
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kh.Sh. Teyubov
  • Corresponding author
  • Y.H. Mammadaliyev name Institute of Petrochemical Processes. ANAS, Baku Az1025, Baku Ave Khojaly 30
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E.N. Askerova
  • Corresponding author
  • Y.H. Mammadaliyev name Institute of Petrochemical Processes. ANAS, Baku Az1025, Baku Ave Khojaly 30
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T.S. Latifova
  • Corresponding author
  • Y.H. Mammadaliyev name Institute of Petrochemical Processes. ANAS, Baku Az1025, Baku Ave Khojaly 30
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V.M. Abbasov
  • Corresponding author
  • Y.H. Mammadaliyev name Institute of Petrochemical Processes. ANAS, Baku Az1025, Baku Ave Khojaly 30
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-18 | DOI: https://doi.org/10.1515/cse-2015-0001

Abstract

The process of obtaining low molecular weight C2-C4 olefins, as a result of thermal and thermocatalytic conversion of cottonseed oil was investigated. The total content of olefin gases obtained by the thermal conversion of cottonseed oil in the temperature range of 700-800°C is 57.2-65.2 wt. %. Thermocatalytic conversion of cottonseed oil on the natural halloysite nanotubes as a catalyst in the temperature range of 500-800 ° provides the total content of olefins 10.8-69.2 wt. with increased yield of propylene and butenes.

Keywords: thermal and thermocatalytic cracking; halloysite; vegetable oil; low molecular weight olefins

References

  • [1] Bridgwater A.V., Peacocke, G.V.C., Fast pyrolysis processes for biomass, Sust. Energy Rev., 2000, 4 (1), 1-73. CrossrefGoogle Scholar

  • [2] Suarez P.A., Meneghetti S.M., Meneghetti M.R., Wolf C.R., Transformation of triglycerides into fuels, polymers and chemicals: some applications of catalysis in oleochemistry , Quim Nova, 2007, 30, 667-676. Web of ScienceCrossrefGoogle Scholar

  • [3] Alencar J.W., Alves P.B., Craveiro A.A., Pyrolysis of tropical vegetable oils, Journal of Agricultural and Food Chemistry,1983, 31 (6), 1268-1276. CrossrefGoogle Scholar

  • [4] Fortes I.C., Baugh P.J ., Pyrolysis -GC/MS studies of vegetable oils from macauba fruit, J.Anal. Appl. Pyrolysis, 1994,72, 103-111. Google Scholar

  • [5] Fortes I.C., Baugh P.J., Study of analytical on-line pyrolysis of oils from macauba fruit, J. Braz. Chem. Soc., 1996, 10, 469-477. Google Scholar

  • [6] Park K.C., Ihm S.K., Comparison of Pt/Zeolite Catalysts for n-Hexadecane Hydroisomerization, Appl. Catal., A: General Appl. Catal., 2000, 203, 201-207. Google Scholar

  • [7] Katikaneni S.P.R., Adjaye J.D., Bakhshi N.N., Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts, Can. J. Chem. Eng., 1995, 73. 484-497. Google Scholar

  • [8] Schwab A.W., Dykstra G.J., Selke E., Sorenson S.C., Pryde E.H., Diesel fuel from thermal-decomposition of soybean oil, J. Am Oil Chem Soc., 1988, 65, 1781-1786. Google Scholar

  • [9] Santos F.R., Ferreira J.C., Costa S.R., Catalytic decomposition of soybean oil in the presence of different zeolites, Quim Nova, 1998, 21, 560-563. CrossrefGoogle Scholar

  • [10] Idem R.O., Katikaneni S.P., Bakhshi N.N., Thermal cracking of canola oil: reaction products in the presence and absence of steam, Energy Fuels, 1996, 10, 1150-1162. CrossrefGoogle Scholar

  • [11] Idem R.O., Katikaneni S.P., Bakhshi N.N., Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution, Fuel Process Tech., 1997, 51, 101-125. Google Scholar

  • [12] Katikaneni S.P., Bakhshi N.N., Adjaye J.D., Studies on the catalytic conversion of canola oil to hydrocarbons: influence of hybrid catalysts and steam, Energy Fuels, 1995, 9, 599-609. CrossrefGoogle Scholar

  • [13] Katikaneni S.P., Adjaye J.D., Idem R.O., Bakhshi N.N., Performance studies of various cracking catalysts in the conversion of canola oil to fuels and chemicals in a fluidizedbed reactor, J. Am Oil Chem. Soc.,1998, 75, 381-391 Google Scholar

  • [14] Prasad Y.S., Bakhshi N.N., Mathews J.F., Eager R.L. Catalytic conversion of canola oil to fuels and chemical feedstocks, 1. Effect of process conditions on the performance of HZSM-5 catalyst, Can. J. Chem. Eng., 1986, 64, 278-284. Google Scholar

  • [15] Twaiq F.A., Zabidi N.A., Biores B.S., Catalytic conversion of palm oil to hydrocarbons; performance of various zeolite catalysts, Ind. Eng. Chem. Res., 1999, 38, 3230-3237. Google Scholar

  • [16] Sharma R.K., Bakhshi N.N., Catalytic upgrading of biomass derived oils to transportation fuels and chemicals, Can J. Chem. Eng., 1991, 69, 1071-1081. Google Scholar

  • [17] Nawar W.W., Termal degradation of lipids – review, J. Agric. Food Chem., 1989, 17, 18-24. CrossrefGoogle Scholar

  • [18] Elordi G, Olazar M., Lopez G., Castano P., J. Bilbao J., Role of pore structure in the deactivation of zeolites (HZSM-5, Hp and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor, Appl. Catal. B., Env., 2011, 102, 224-231. Web of ScienceGoogle Scholar

  • [19] Donk S.V., Janssen A.H, J.H. Bitter, J.H. DeJong K.P., Generation, characterization and impact of mesopores in zeolite catalysts, Catal. Rev. Sci. Eng., 2003, 45, 297-319. Google Scholar

  • [20] Carati G.A., Rizzoand C.N., Millini R.P., New trends in the synthesis of crystalline microporous materials, Catal. Sci. Technol., 2013, 3, 833-857. Web of ScienceGoogle Scholar

  • [21] Abdullayev E., Lvov Y., Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release, J. Materials Chem. B., 2013, 1, 2894-2903. Web of ScienceGoogle Scholar

  • [22] Bergaya F., Theng B.K.G. , Lagaly G., Handbook of Clay Science, ed. Developments in Clay Science, Elsevier Ltd., 2006 Google Scholar

  • [23] Wilson L., Special clays from attapulgite to sepolite, Industrial Minerals, 2004, 446, 54-61. Google Scholar

  • [24] Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B., Halloysite clay minerals – A review, Clay Minerals, 2005, 40, 383–426 Google Scholar

  • [25] Du M., Guo B., Jia D., Newly emerging applications of halloysite nanotubes: A review, Polymer International, 2010, 59, 574–582. Web of ScienceGoogle Scholar

About the article

Received: 2014-11-14

Accepted: 2014-12-29

Published Online: 2015-01-18


Citation Information: Catalysis for Sustainable Energy, Volume 2, Issue 1, Pages 28–32, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2015-0001.

Export Citation

© 2015 T.A. Mammadova, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in