Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Methane decomposition over Fe supported catalysts for hydrogen and nano carbon yield

Anis Hamza Fakeeha
  • Corresponding author
  • Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmed Aidid Ibrahim
  • Corresponding author
  • Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhammad Awais Naeem
  • Corresponding author
  • Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wasim Ullah Khan
  • Corresponding author
  • Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmed Elhag Abasaeed
  • Corresponding author
  • Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raja L. Alotaibi / Ahmed Sadeq Al-Fatesh
  • Corresponding author
  • Chemical Engineering Department, College of Engineering, King Saud University P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/cse-2015-0005

Abstract

Production of hydrogen, being an environmentally friendly energy source, has gained a lot of attention in the recent years. In this article, iron-based catalysts, with different active metal loadings, supported over magnesia and titania are investigated for hydrogen production via catalytic decomposition of methane. The catalytic activity and stability results revealed that magnesia supported catalysts performed better than titania supported catalysts. Hydrogen reduction temperature of 500°C was obtained suitable for catalyst activation. For magnesia supported catalysts, only higher loadings i.e., 30% and 40% Fe-Mg catalysts showed reasonable activity, while all titania supported catalysts presented less activity as well as deactivation. Among all the catalysts, 30% Fe/MgO catalyst displayed better activity. The formation of carbon nanofibers was evidenced from morphological analysis. FESEM and TEM images showed the generation of nonuniform carbon nanofibers with broader diameter. The catalysts were characterized using different techniques such as BET, H2-TPR, O2-TPO, XRD, TGA, FESEM and TEM.

Keywords: Activation; Carbon nanofibers; Fe loading; Hydrogen; Magnesia; Titania

References

  • [1] Khaodee W., Wongsakulphasatch S., Kiatkittipong W., Arpornwichanop A., Laosiripojana N Assabumrungrat S., Selection of appropriate primary fuel for hydrogen production for different fuel cell types: Comparison between decomposition and steam reforming, Int. J. Hydrogen Energy, 2011, 36, 7696-7706. Google Scholar

  • [2] Acar C., Dincer I., Comparative assessment of hydrogen production methods from renewable and non-renewable sources, Int. J. Hydrogen Energy, 2014, 39, 1-12. Google Scholar

  • [3] Al-Hassani A.A., Abbas H.F., Daud W.M.A.W., Production of COx-free hydrogen by the thermal decomposition of methane over activated carbon: Catalyst deactivation, Int. J. Hydrogen Energy, 2014, 39, 14783-14791. Google Scholar

  • [4] Wang H.Z., Leung D.Y.C., Leung M.K.H., Ni M., A review on hydrogen production using aluminum and aluminum alloys, Renew. Sust. Energy Rev.,2009, 13, 845-853. CrossrefGoogle Scholar

  • [5] Fakeeha A.H., Naeem M.A., Khan W.U., Abasaeed A.E., Al-Fatesh A.S.A., Reforming of Methane by CO2 over Bimetallic Ni-Mn/γ-Al2O3 Catalyst, Chin. J. Chem. Phys., 2014, 27, 214-220. Google Scholar

  • [6] Manfro R.L. Ribeiro N.F.P. Souza M.M.V.M., Production of hydrogen from steam reforming of glycerol using nickel catalysts supported on Al2O3, CeO2 and ZrO2, Catal. Sust. Energy, 2013, 1, 60-70. Google Scholar

  • [7] Blom P.W.E., Basson G.W., Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen, Int. J. Hydrogen Energy, 2013, 38, 5671-5683. Google Scholar

  • [8] Venugopal A., Kumar S.N., Ashok J., Prasad D.H., Kumari V.D., Prasad K.B.S., Subrahmanyam M., Hydrogen production by catalytic decomposition of methane over Ni/SiO2, Int. J. Hydrogen Energy, 2007, 32, 1782-1788. Google Scholar

  • [9] Pinilla J.L., Utrilla R., Lázaro M.J., Moliner R., Suelves I., García A.B., Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor, Fuel Process. Technol., 2011, 92, 1480-1488. Web of ScienceGoogle Scholar

  • [10] Baker R.T.K. Waite R.J., Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene, Journal of Catalysis, 1975, 37, 101-105. CrossrefGoogle Scholar

  • [11] Baker R.T.K, Catalytic growth of carbon filaments, Carbon, 1989, 27, 315-323. CrossrefGoogle Scholar

  • [12] Krishnankutty N., Park C., Rodriguez N.M., Baker R.T.K., The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene, Catalysis Today, 1997, 37, 295-307. CrossrefGoogle Scholar

  • [13] Zhang C., Li a J., Shi C., Liu E., Du X., Feng W., Zhao N., The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni–Fe alloy catalyst, Carbon 2011, 49, 1151–1158. Web of ScienceGoogle Scholar

  • [14] Rodriguez N.M., Kim M.S., Fortin F., Mochida I., Baker R.T.K., Carbon deposition on iron nickel alloy particles. Appl Catal A: Gen 1997, 148, 265-282. Google Scholar

  • [15] Shen Y., Lua A.C., Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane, Appl. Catal. B: Environ., 2015, 164, 61-69. Google Scholar

  • [16] Awadallah A.E., Mostafa M.S., Aboul-Enein A.A., Hanafi S.A., Hydrogen production via methane decomposition over Al2O3– TiO2 binary oxides supported Ni catalysts: Effect of Ti content on the catalytic efficiency, Fuel, 2014, 129, 68-77. Web of ScienceGoogle Scholar

  • [17] Chai S.P., Zein S.H.S., Mohamed A.R., COx-free hydrogen and carbon nanofibers produced from direct decomposition of methane on nickel-based catalysts, J. Nat. Gas Chem., 2006, 15, 253-258. CrossrefGoogle Scholar

  • [18] Awadallah A.E., Aboul-Enein A.A., Aboul-Gheit A.K., Effect of progressive Co loading on commercial Co–Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes, Energy Convers. Manage., 2014, 77, 143-151. Web of ScienceGoogle Scholar

  • [19] Abanades A., Rubbia C. Salmieri, D., Technological challenges for industrial development of hydrogen production based on methane cracking, Energy, 2012, 46, 359-363. Google Scholar

  • [20] Li Y., Li D., Wang G., Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review, Catal. Today, 2011, 162, 1-48. Google Scholar

  • [21] Abbas H.F., Daud W.M.A.W., Hydrogen production by methane decomposition: A review, Int. J. Hydrogen Energy, 2010, 35, 1160-1190. Google Scholar

  • [22] Tapia-Parada K., Valverde-Aguilar G., Mantilla A., Valenzuela M.A., Hernández E., Synthesis and characterization of Ni/ Ce–SiO2 and Co/Ce–TiO2 catalysts for methane decomposition, Fuel, 2013, 110, 70-75. CrossrefGoogle Scholar

  • [23] Ermakova M.A., Ermakov D.Y., Chuvilin A.L., Kuvshinov G.G., Decomposition of Methane over Iron Catalysts at the Range of Moderate Temperatures: The Influence of Structure of the Catalytic Systems and the Reaction Conditions on the Yield of Carbon and Morphology of Carbon Filaments. J. Catal., 2001, 201, 183-197. Google Scholar

  • [24] Pudukudy M., Yaakob Z., Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes, Chem. Eng. J., 2015, 262, 1009-1021. Web of ScienceGoogle Scholar

  • [25] Cunha A.F., Orfao J.J.M., Figueiredo J.L., Catalytic decomposition of methane on Raney-type catalysts, Appl. Catal. A: Gen., 2008, 348, 103-112. Google Scholar

  • [26] Cunha A.F., Orfao J.J.M., Figueiredo J.L., Methane decomposition on Fe–Cu Raney-type catalysts, Fuel Process. Technol., 2009, 90, 1234-1240. Web of ScienceGoogle Scholar

  • [27] Naresh S., Devadas P., Gerald P.H., Hydrogen Production by Catalytic Decomposition of Methane, Energy Fuel., 2001, 15, 1528-1534. CrossrefGoogle Scholar

  • [28] Naresh S., Pattanaik S., Huggins F.E., Panjala D., Huffman G.P., XAFS and Mössbauer spectroscopy characterization of supported binary catalysts for nonoxidative dehydrogenation of methane, Fuel Process. Technol., 2003, 83, 163-173. Google Scholar

  • [29] Saraswat S.K., Pant K.K., Synthesis of carbon nanotubes by thermo catalytic decomposition of methane over Cu and Zn promoted Ni/MCM-22 catalyst, J. Environ. Chem. Eng., 2013, 1, 746-754. Google Scholar

  • [30] Tang L., Yamaguchi D., Burke N., Trimm D., Chiang K., Methane decomposition over ceria modified iron catalysts, Catal. Commun., 2010, 11, 1215-1219. CrossrefGoogle Scholar

  • [31] Ibrahim A.A, Fakeeha A.H., Al-FateshA.S., Abasaeed A.E., Wasim U. Khan W.U., Methane decomposition over iron catalyst for hydrogen production, Int. J. Hydrogen Energy,2015, 40, 7593-7600. Google Scholar

  • [32] Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Ushankov V.A., Chuvilin A.L., Pavlyukhin Y.T.,Promoted iron Catalyst of Low-Temperature Methane Decomposition,Chemistry for Sustainable Development, 2003,11, 239-247. Google Scholar

  • [33] Zhang X., Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support, Mater. Chem. Phys., 2009, 16, 415-420. CrossrefGoogle Scholar

  • [34] Taghavimoghaddam J., Knowles G.P., Chaffee A.L., Impact of preparation methods on SBA-15 supported low cobalt-content composites: structure and catalytic activity, J. Mol. Catal. A: Chem., 2013; 377, 115-122. Web of ScienceGoogle Scholar

  • [35] Saraswat S.K., Pant K.K., Synthesis of hydrogen and carbon nanotubes over copper promoted Ni/SiO2 catalyst by thermocatalytic decomposition of methane, J. Nat. Gas Sci. Eng., 2013, 13, 52-59. Web of ScienceGoogle Scholar

  • [36] Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W. Maniukiewicz W., Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A: Gen., 2007, 326, 17-27. Web of ScienceGoogle Scholar

  • [37] Liu F., Asakura K., He H., Liu Y., Shan W., Shi X., Zhang C., Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3, Catal. Today, 2011, 164, 520-527. Google Scholar

  • [38] Tan S. Wang, B., Active Sites for Adsorption and Reaction of Molecules on Rutile TiO2(110) and Anatase TiO2(001) Surfaces, Chin. J. Chem. Phys., 2015, 28, 383-395. Google Scholar

  • [39] Wang W., Wang H., Yang Y. Jiang S., Ni–SiO2 and Ni–Fe–SiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments, International Journal of Hydrogen Energy, 2012 37, 9058-9066. Google Scholar

  • [40] Reshetenko T.V. Avdeeva L.B Ushakov V.A Moroz E.M. Shmakov A.N. Kriventsov V.V. Kochubey D.I. Pavlyukhin Yu.T. Chuvilin A.L. Ismagilov Z.R.,Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures: Part II. Evolution of the catalysts in reaction, Applied Catalysis A: General, 2004, 270, 87-99. Google Scholar

  • [41] Avdeeva L.B. Reshetenko T.V. Ismagilov Z.R. Likholobov V.A. Iron-containing catalysts of methane decomposition: accumulation of filamentous, carbon, Appl. Catal. A: Gen., 2002, 228, 53-63. Google Scholar

  • [42] Choudhary T.V., Aksoylu E., Goodman D.W., Nonoxidative activation of methane, Catal. Rev. Sci. Eng., 2003, 45, 151-203. Google Scholar

  • [43] Lamouroux E., Serp P., Kalck P., Catalytic routes towards single wall carbon nanotubes, Catal. Rev. Sci. Eng., 2007, 49, 341-405. CrossrefGoogle Scholar

About the article

Received: 2015-10-18

Accepted: 2015-11-09

Published Online: 2015-12-31


Citation Information: Catalysis for Sustainable Energy, Volume 2, Issue 1, Pages 71–82, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2015-0005.

Export Citation

© 2015 Anis Hamza Fakeeha et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in