Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

A review on heterocyclic moieties and their applications

Syed Sabir
  • Corresponding author
  • Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh-11421, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mansour Ibrahim Alhazza
  • Corresponding author
  • Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh-11421, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmed Aidid Ibrahim
  • Corresponding author
  • Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh-11421, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-20 | DOI: https://doi.org/10.1515/cse-2015-0009


Several described in literature crosslinking methods to obtain heterocyclic moieties were discussed in this review. Selected important properties of polyamides and their synthesis reactions were briefly presented. The heterocyclic moieties displayed a wide range of applications in medicine and industry. New heterocyclic derivatives obtained by linking heterocyclic moiety to amic acids and imides found diverse applications: as surfactants, antimicrobial agents, or corrosion inhibitors. The present article describes the state-of-the art synthesis methods of the heterocyclic compounds and their application.

Keywords: Applications; Corrosion Inhibitors; Heterocyclic moieties; Synthesis


  • [1] Qian, Z.G. Pang, Z.Z.; Li, Z.X.; He, M.H.; Liu, J.G.; Fan, L. Yang, S.Y. Photoimageable polyimides derived from α,α-(4-amino-3,5- dimethylphenyl)phenylmethane and aromatic dianhydride, J Polym Sci. A Polym Chem., 2002, 40, 3012-3020. CrossrefGoogle Scholar

  • [2] Chung, C.-L.; Yang, C.-P.; Hsiao, S.-H. Organosoluble and colorless fluorinated poly(ether imides) from 1,2-bis(3,4-dicarboxyphenoxy)benzene dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. J Polym Sci. A Polym Chem., 2006, 44, 3092-3102. CrossrefGoogle Scholar

  • [3] Fukushima, T.; Hosokawa, K.; Oyama, T.; Iijima, T.; Tomoi, M.; Itatani, H. Synthesis and positive-imaging photosensitivity of soluble polyimides having pendant carboxyl groups. J. Polym Sci. A Polym Chem., 2001, 39, 934-946 CrossrefGoogle Scholar

  • [4] Burdeaux, D.; Townsend, P.; Carr, J.; Garrou, P. Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules. J. Electron Mater., 1990, 19, 1357-1366. CrossrefGoogle Scholar

  • [5] Kirchhoff, R.-A.; Bruza, K.-J. Benzocyclobutenes in polymer synthesis. Prog Polym Sci., 1993, 18, 85-185. CrossrefGoogle Scholar

  • [6] Farona, M.-F. Benzocyclobutenes in polymer chemistry. Prog Polym Sci., 1996, 21, 505-555. CrossrefGoogle Scholar

  • [7] Barton, D.; Ollis, W.-D., Eds. Comprehensive organic chemistry: the synthesis and reactions of organic compounds, 1st ed.; Pergamon Press: Oxford, 1979. Google Scholar

  • [8] Chiriac, C.-I; Nechifor, M.; Tanasa. F., Formamide, a novel challenging reagent for the direct synthesis of non-Nsubstituted cyclic imides. Rev. Roumaine De Chim., 2007, 52, 883–886. Google Scholar

  • [9] Hargreaves, M.-K; Pritchard, J.-D; Dave, H.-R. Cyclic carboxylic monoimides. Chem. Rev. 1970, 70, 439-469. CrossrefGoogle Scholar

  • [10] Peng, Y.; Song, G.; Qian, X. Imidation of cyclic carboxylic anhydrides under microwave irradiation. Synth. Commun. 2001, 31, 1927-1931. CrossrefGoogle Scholar

  • [11] Hijji, Y.-M; Benjamin, E. Efficient Microwave Assisted Syntheses of Unsubstituted Cyclic Imides. Heterocycles, 2006, 68, 2259-2267. CrossrefGoogle Scholar

  • [12] Der-Jang, L.; Kung-Li W.; Ying-Chi H.; Kueir-Rarn L.; Juin-Yih L., Chang-Sik H. Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci., 2012, 37, 907-974. Google Scholar

  • [13] Mohammed, I.-A; Mustapha, A. Synthesis of New Azo Compounds Based on N-(4-Hydroxypheneyl)maleimide and N-(4-Methylpheneyl)maleimide. Molecules, 2010, 15, 7498-7508. CrossrefGoogle Scholar

  • [14] Yasin, M. Thermal process was used for preparation of imides from the corresponding amic acids. MSc Thesis, Chem. Dept., Sci. College, Baghdad Univ., 2007. Google Scholar

  • [15] Pyriadi, T.; Al-Azzawi, A. and Al-Obaidi, K. J. Synthesis, characterization and polymerization of n-substituted maleimidylacrylates. Journal of Al-Nahrain University (Sience) 2009, 12, 1-14. Google Scholar

  • [16] Iniaghe, L.; Usifoh, C.-O. Anticonvulsant properties of N-cyclopentylphthalimide and N-benzylphthalimide. Eur. J. Org. Chem., 1999, 2757–2762ä. Res. J. Pharm., Biol. Chem. Sci., 2010, 1, 1068–1072. Google Scholar

  • [17] Klarner, F.-G; Breitkopf, V. The Effect of Pressure on Retro Diels–Alder Reactions. Eur. J. Org. Chem. 1999, 2757-2762. CrossrefGoogle Scholar

  • [18] Kossakowski, J.; Predka, A. Synthesis of new N-substituted cyclic imides with an expected anxiolytic activity. XXVI. Derivatives of N-hydroxy-7-diphenylmethylenebicycloGoogle Scholar

  • [2.2.1] hept-2-ene-5,6-dicarboximide. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA: Chemia, 2003, 58, 147–153. Google Scholar

  • [19] Castro, B.-R. Replacement of Alcoholic Hydroxyl Groups by Halogens and Other Nucleophiles via Oxyphosphonium Intermediates. Org. React., 1983, 29, 1–162. Google Scholar

  • [20] Macor, J.-E.; Wehner, J.-M. The use of (o-nitroaryl)acetonitriles in the Mitsunobu reaction: mechanistic implications and synthetic applications. Heterocycles, 1993, 35, 349–365. CrossrefGoogle Scholar

  • [21] Coleman, R.-S.; Grant, E.-B. A low-temperature Mitsunobu reaction for the inversion of sterically hindered secondary alcohols. Tetrahedron Lett., 1994, 35, 8341–8344. CrossrefGoogle Scholar

  • [22] Hughes, D.-L. The Mitsunobu Reaction. Organic Reactions, 1992, 42, 335–656. Google Scholar

  • [23] Ducrocq, C. Wendling, F. Tourbez-Perrin, M. Rivalle, C. Tambourin, P. Pochon, F. and Bisagni, E. Structure-activity relationships in a series of newly synthesized 1-aminosubstituted ellipticine derivatives. J. Med. Chem. 1980, 23, 1212-1216. CrossrefGoogle Scholar

  • [24] Reddy, P. Kondo, S. Toru, T. and Ueno, Y. Lewis Acid and Hexamethyldisilazane-Promoted Efficient Synthesis of N-Alkyland N-Arylimide Derivatives. Org. Chem. 1997, 62, 2652-2654. CrossrefGoogle Scholar

  • [25] Połoński, T.; Milewska, M.; Gdaniec, M. Synthesis, structure and chiroptical spectra of the bicyclic α-diketones, imides and dithioimides related to santenone. Tetrahedron: Asymmetry, 2000, 11, 3113–3122. CrossrefGoogle Scholar

  • [26] You, C.; Würthner, F. Porphyrin−Perylene Bisimide Dyads and Triads: Synthesis and Optical and Coordination Properties. Org. Lett. 2004, 6, 2401–2404. CrossrefGoogle Scholar

  • [27] Taherpour, A.-A.; Mansuri, H.-R. Fast Oxidation of Lactams to Cyclic Imides Using Microwave Irradiation. Turk. J. Chem., 2005, 29, 317-320. Google Scholar

  • [28] Lin, Y.; Cheng, J.; Chu, Y. Microwave-accelerated Claisen rearrangement in bicyclic imidazolium Google Scholar

  • [β-3C-im]Google Scholar

  • [NTf2] ionic liquid. Tetrahedron., 2007, 63, 10949–10957. Google Scholar

  • [29] Abdel-Aziz, A. M. Novel and versatile methodology for synthesis of cyclic imides and evaluation of their cytotoxic, DNA binding, apoptotic inducing activities and molecular modeling study, Eur. J. Med. Chem. 2007, 42, 614–626. Google Scholar

  • [30] Sunita B. S; Sunil U.T; Sushma S. K; Satish U. D; Rajendra P. M; Rajesh B. N; Vinayak S. S; Vinod V. T; Rajendra P. P. A Facile and Efficient Synthesis of N-aryl Imides Using Trifluoroacetic Acid, Int. J. Indian Chem., 2011, 2, 2228–2232. Google Scholar

  • [31] Shimazawa, R. Takayama, H.; Kato, F.; Hashimoto, Y. Synthesis and qsar of dequalinium analogues AS K+ channel blockers investigations on the role of the 4-amino group. Bioorg. Med. Chem. Lett., 1999, 9, 559–562. CrossrefGoogle Scholar

  • [32] Vidal, T.; Petit, A.; Loupy, A.; Gedye, R. Tetrahedron. Re-examination of Microwave-Induced. Synthesis of Phthalimides. 2000, 56, 5473–5478. CrossrefGoogle Scholar

  • [33] Jayakumar, R.; Balaji, R.; Nanjudan, S. Studies on copolymers of 2-(N-phthalimido) ethyl methacrylate with methyl methacrylate Eur. Polym. J. 2000, 36, 1659–1666. Google Scholar

  • [34] Ribeiro da Silva, M. A. V. and Cláudia P. F. S. Standard molar enthalpies of formation and sublimation of N-phenylphthalimide. J. Thermal Anal. Calorim. 2007, 87, 21–25. CrossrefGoogle Scholar

  • [35] Luzzio, F.; Zacherl, A. A facile scheme for phthalimide ⇌ phthalimidine conversion. Tetrahedron Lett., 1999, 40, 2087–2090. CrossrefGoogle Scholar

  • [36] Constantinova T.N; Garbechev I.K. Copolymers containing phthalimide derivatives were used as optical brightening agents, Polym. Int. 1998, 43, 39–43. Google Scholar

  • [37] Lima, L. M.; Brito, F.; Souza, S.; Miranda, A.; Rodrigues, C.; Fraga, A.; Barreiro, E. Novel Phthalimide Derivatives, Designed as Leukotriene D4 Receptor Antagonists Bio org. Med. Chem. Lett. 2002, 12, 1533–1535. CrossrefGoogle Scholar

  • [38] Sena V.L, Srivastava R.M, Silva R.O, Lima V.L. Synthesis and hypolipidemic activity of N-substituted phthalimides. Part V. Farmaco. 2003, 58, 1283–1288. CrossrefGoogle Scholar

  • [39] James M. C., Jr., P. Josee V., George H. C., Iris H. H. Hypolipidemic activity of phthalimide derivatives. 2. N-Phenylphthalimide and derivatives. J. Med. Chem. 1983, 26, 237–243. Google Scholar

  • [40] Bhawani, S.; Deepika, M.; Lalith, K. B and Talesara, G. L. Synthesis and biological evaluation of 7-N-(n-alkoxyphthalimido)-2-hydroxy-4-aryl-6-aryliminothiazolidino Google Scholar

  • [2,3-b]pyrimidines and Related Compounds. Indian J. Chem. 2004, 43B, 1306–1312. Google Scholar

  • [41] Pandey, V.K.; Sarah, T.; Zehra, T. Thiadiazolyl quinazoolones as potential antiviral and antihypertensive agents. Indian J. Chem. 2004, 43B, 180-183. Google Scholar

  • [42] Mogilaiah, K.; Sakram, B. Microwave assisted synthesis of N-(3-aryl-1,8-naphthyridin-2-yl)…. Indian J. Chem. 2007, 46B, 207–209. Google Scholar

  • [43] Varala, R.; Kotra, V.; Alam, M.; Kumar, N. Synthesis of mandelic acid derived phthalimides, Indian J. Chem. 2008, 47B, 1243–4348. Google Scholar

  • [44] Rasika A. P., Meenakshi N. D. Synthesis and evaluation of novel phthalimide derivatives as analgesic and antiinflammatory agents. Der Pharma Chemica. 2010, 2, 185–193. Google Scholar

  • [45] Afshin Z., Sayyed A. Tabatabai, M. F., Avideh A., Parisa N., Vahideh Z., Abbas S. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles Bio org. Med. Chem. Lett. 2005, 15, 1863–1865. Google Scholar

  • [46] Pluempanupat, W.; Adisakwattana, S.; Yibchok-Anun S.; Chavasiri, W. Synthesis of N-phenylphthalimide derivatives as alpha-glucosidase inhibitors. Arch. Pharm. Res. 2007, 30, 1501–1506. CrossrefGoogle Scholar

  • [47] Mahapatra, S.P., Ghode, P., Jain, D.K., Chaturvedi, S.C., Maiti B.C., and Maity T.K. Synthesis and Hypoglycemic Activity of some Phthalimide Derivatives. J. Pharm. Sci. Res. 2010, 2, 567–578. Google Scholar

  • [48] Cohen, S.; Garland E.; Cano, M.; John, M.; Khanchab, M.; Wehner, J.; Arnold, L. N-substituted phthalimides structures showed inhibitory activities as non-nucleoside HIV-1 reverse transcriptase inhibitors, Carcinogen, 1955, 16, 2743– 2752. Google Scholar

  • [49] Norman, M; Minick, D.; Rigdon, G. Effect of Linking Bridge Modifications on the Antipsychotic Profile of Some Phthalimide and Isoindolinone Derivative. J. Med. Chem. 1996, 39, 149–157. CrossrefGoogle Scholar

  • [50] White, H.; Woodhead, J.; Franklin, M. General Principles: Experimental Selection, Quantification, and Evaluation of Anticonvulsant Drugs. In Antiepileptic drugs, 4th Ed.; R. Levy, R. Mattson, B. Meldrum (Eds.) Raven Press, New York, 1995. Google Scholar

  • [51] Haider, N.; Jbara, R.; Käferböck, J.; Traar, U. Synthesis of tetraand pentacyc lic carbazole-fused imides as potential antitumor agents . ARKIVOC. 2009, 6, 38–47. Google Scholar

  • [52] Russo, F.; Romeo, G.; Santagati, N. Synthesis of new thienopyrimidobenzothiazoles and thienopyrimidobenzoxazoles with analgesic and antiinflammatory properties. Eur. J. Med. Chem.1994, 29, 569–578. CrossrefGoogle Scholar

  • [53] Vashi, B.; Mehta, D.; Shah, D. Synthesis and biological activity of 4-thiazolidinones, 2-azetidinones, 4-imidazolinone derivatives having thymol moiety. Indian J. Chem. 1995, 34B, 802–808. Google Scholar

  • [54] Patel, K.; Mehta, A. synthesis and antifungal activity of azetidinone and Thiazolidinones derivatives of 2-amino- 6-(2-naphthalenyl) thiazolo Google Scholar

  • [3, 2-d] thiadiazole. Eur. J. Chem. 2006, 3, 267–273. Google Scholar

  • [55] Mohan, J.; Kumar, A. Condensed bridgehead nitrogen heterocyclic systems: Synthesis and antimicrobial activity of s-triazolo Google Scholar

  • [3,4-b] Google Scholar

  • [1,3,4] thiadiazoles and s-triazolo Google Scholar

  • [3,4-b] Google Scholar

  • [1,3,4] thiadiazines. J. Ind. Heterocycl. Chem. 2001, 71, 11 –21. Google Scholar

  • [56] Bharatham, N.; Bharatham, K.; Lee, K. Quantitative structure activity relationships and molecular docking studies of P56 LCK inhibitors.Bull. Korean Chem. Soc. 2006, 27, 266–272. Google Scholar

  • [57] Bradshaw, T.; Westwell, A. The Development of the Antitumour Benzothiazole Prodrug, Phortress, as a Clinical Candidate. Curr. Med. Chem. 2004, 11, 1241–1253. Google Scholar

  • [58] Bryson, M; Fulton, B.; Benfield, P. Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs. 1996, 52, 549–563. CrossrefGoogle Scholar

  • [59] Gurupadayya, B.-M; Gopal, M. Padmashali, B.; Monahar, Y.-N. Synthesis and pharmacological evalution of azetidin-2-ones and thiazolidin-4-ones encompassing benzothaiazole, Indian J. Pharm. Sci., 2008, 70, 572–577. Google Scholar

  • [60] Bowyer, P.; Ruwani, S. Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum. Biochem. J. 2007, 2, 173–180. CrossrefGoogle Scholar

  • [61] Bhusari, K. Ammekar, N.; Khedekar, P.; Kale, M.; Bhole.R. Synthesis and invitro antimicrobial activity of some new 4-amino-N-(1,3-benzothiazol-2-yl) benzenesulphonamide derivatives. Asian J. Res. Chem. 2008, 1, 53-57. Google Scholar

  • [62] Bharagava, P; Jose, K. Synthesis of new local anaesthtics II. J. Ind. Chem. Soc. 1960, 37, 314–316. Google Scholar

  • [63] Caleta I, Grdisa M, Mrvos-Sermek D, Cetina M, Tralić-Kulenović V, Pavelić K, Karminski-Zamola G., Synthesis, crystal structure and antiproliferative evaluation of some new substituted benzothiazoles and styrylbenzothiazoles. Farmaco, 2004, 59, 297–305. CrossrefGoogle Scholar

  • [64] Trapani,G. Synthesis and benzodiazepine receptor binding of some imidazoandpyrimidoGoogle Scholar

  • [2,1-b]benzothiazoles. Eur. J. Med. Chem., 1996, 31, 575–587. Google Scholar

  • [65] Yoshida,M. Synthesis and biological evaluation of benzothiazole derivatives as potent antitumor agents. Bioorg. Med. Chem. Lett. 2005, 15, 3328–3332. CrossrefGoogle Scholar

  • [66] Bhusari, K. Synthesis and antitubercular activity of some substituted 2-Google Scholar

  • [(4-aminophenyl)sulfonamido]benzothiazoles. Indian J. Heterocycl. Chem., 2000, 9, 213–216. Google Scholar

  • [67] Gurupadaiah, B.-M.; Jayachandran, E.; Kumar, B.-S.; Nagappa, A.-N.; Nargund, L.V.G. Synthesis of fluoro benzothiazole sulfonamides and their antibacterial activity. Indian J. Heterocycl. Chem., 1998, 7, 213–216. Google Scholar

  • [68] Dave, A. Synthesis of antibacterial efficacy of benzothiazoles linked to halogenated phenothiazine moiety, J. Indian Chem. 1988, 65, 365–373. Google Scholar

  • [69] El- Ashry, E.; El- Nemr, A.; Esawy, S.; Ragab, S.Corrosion inhibitors: Part II: Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives. Electrochim. Acta. 2006, 51, 3957–3968. Google Scholar

  • [70] Hugerschoff, H. Einwirkung von halogenen auf thioharnstoffe. Chem. Ber., 1901, 34, 3130–3135. CrossrefGoogle Scholar

  • [71] Marston T.-B, Arthur S. Researches on thiazoles. viii. the condensation of o-aminophenyl mercaptan and o-aminophenyl disulfide with acid chlorides, anhydrides and esters. J. Am. Chem. Soc., 1926, 48, 248–254. Google Scholar

  • [72] Lankelm, H.-P.; Knauf, A.-E. The migration of acyl from sulfur to nitrogen, J. Am. Chem. Soc., 1931, 53, 309–312. CrossrefGoogle Scholar

  • [73] Abeles, R.-H.; Maycock, A.-L. Suicide enzyme inactivators. Acc. Chem. Res., 1976, 9, 313–319. CrossrefGoogle Scholar

  • [74] Lima L.-M, Castro P, Machado A.-L, Fraga C.-A, Lugnier C, de Moraes V.-L, Barreiro E.-J. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg Med Chem. 2002 10, 3067-3073. CrossrefGoogle Scholar

  • [75] Swarnkar, P.-K.; Kriplani, P.; Gupta, G.-N.; Ojha, K.-G. Synthesis and Antibacterial Activity of Some New Phenothiazine Derivatives. E-J. Chem., 2007, 4, 14–20. Google Scholar

  • [76] Husain, A.; Ajmal, M. Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties. Acta Pharm., 2009, 59, 223–233. Google Scholar

  • [77] Joule, J.; Mills, K. Heterocyclic Chemistry, 5th (Ed.), A John Wiley & Sons Publication Ltd., Blackwell Publishing Ltd, West Sussex, UK, 2010. Google Scholar

  • [78] Manish, S.; Deepak, S.; Aashish, S.; Gokulan, P. Synthesis and Biological Evaluation of Some New 1-3-4-Oxadizole Derivatives J. Curr. Pharm. Res. 2010, 4, 18–21. Google Scholar

  • [79] Jin, L.; Chen, J.; Song, B.; Chen, Z.; Yang, S. Synthesis, structure, and bioactivity of N′-substituted benzylidene- 3,4,5-trimethoxybenzohydrazide and 3-acetyl-2-substituted phenyl-5-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1,3,4- oxadiazole derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 5036–5040. CrossrefGoogle Scholar

  • [80] Yar, M.-S; Siddiqui, A.-A.; Ali, M.-A. Synthesis and Anti Tuberculostatic Activity of Novel 1,3,4-Oxadiazole Derivatives. J. Chin. Chem. Soc. (Taipei, Taiwan), 2007, 54, 5–8. CrossrefGoogle Scholar

  • [81] Yar, M.-S.; Akhter, M.-W. Synthesis and anticonvulsant activity of substituted oxadiazole and thiadiazole derivatives. Acta Pol. Pharm., 2009, 66, 393-397. Google Scholar

  • [82] Jayashankar, B.; Lokanath, K.; Baskaran, N.; H. Sathish, H. Synthesis and pharmacological evaluation of 1,3,4-oxadiazole bearing bis(heterocycle) derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2009, 44, 3898–3902. CrossrefGoogle Scholar

  • [83] Piatnitski Chekler, E.-L.; Elokdah, H.-M.; Butera, J. Efficient one-pot synthesis of substituted 2-amino-1,3,4-oxadiazoles. Tetrahedron Lett., 2008, 49, 6709-6711. CrossrefGoogle Scholar

  • [84] Kudelko, A.; Zielinski, W. An efficient synthesis of new 2-aminomethyl-1,3,4- oxadiazoles from enantiomeric phenylglycine hydrazides. Tetrahedron, 2009, 65, 1200–1206. CrossrefGoogle Scholar

  • [85] Kumar, H.; Javed, S.; Khan, S.; Amir, M. 1,3,4-Oxadiazole/ thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-yloxy acetic acid: synthesis and preliminary evaluation of biological properties. Eur. J. Med. Chem. 2008, 43, 2688–2698. Google Scholar

  • [86] Khalid M.-K., Zia-Ullah, Mubeen R., Shahnaz P., Syed M.-H., Muhammad I.-C., Atta-ur-Rahman and Wolfgang V. Microwave- Assisted Synthesis of 2,5-Disubstituted-1,3,4-Oxadiazoles Lett. Org. Chem. 2004, 1, 50–52. Google Scholar

  • [87] Al-Omar, M. Synthesis and Antimicrobial Activity of New 5-(2-Thienyl)-1,2,4-triazoles and 5-(2-Thienyl)-1,3,4-oxadiazoles and Related Derivatives. Molecules, 2010, 15, 502-514. Google Scholar

  • [88] Radi, M.; Crespan, E.; Botta, G.; Falchi, F.; Maga, G.; Manetti, F.; Corradi, V.; Mancini, M. Santucci, M.-A.; Schenone, S.; Botta, M. Discovery and SAR of 1,3,4-thiadiazole derivatives as potent Abl tyrosine kinase inhibitors and cytodifferentiating agents. Bioorg. Med. Chem. Letters, 2008, 18, 1207–1211. CrossrefGoogle Scholar

  • [89] Guha, P.-C; Roy-Choudhary, S.-K. Converted 1-phenylthiocarbazide in to 2-phenylhydrazino-1,3,4-thiadiazole by with heating with formic acid, J. Indian Chem. Soc., 1928, 5, 163-169. Google Scholar

  • [90] Anisworth, C. The Condensation of Aryl Carboxylic Acid Hydrazides with Orthoesters J. Am. Chem. Soc. 1955 77, 1148 -1150. CrossrefGoogle Scholar

  • [91] Stolle, A.; Kind, A. Acetyl derivative. J. Prakt. Chem. 1904, 70, 423–432. Google Scholar

  • [92] Jitendra K.-G; Rakesh K.-Y; Rupesh D; Pramod K.-S. Recent Advancements in the Synthesis and Pharmacological Evaluation of Substituted 1, 3, 4- Thiadiazole Derivatives Int. J. PharmTech Res. 2010, 2, 1493-1507. Google Scholar

  • [93] Abd El-Rahman, N.; El-Kateb, A.; Mady, M. Simplified Approach to the Uncatalyzed Knoevenagel Condensation and Michael Addition Reactions in Water using Microwave Irradiation. Synth, Commun., 2007, 37, 3961–3970. Google Scholar

  • [94] Naglaa M. A.-R; Tamer S.-S., Mohamed F.-M., Ultrasound assisted synthesis of some new 1,3,4-thiadiazole and bi(1,3,4-thiadiazole) derivatives incorporating pyrazolone moiety. Ultrason. Sonochem. 2009, 16, 70-74. Google Scholar

  • [95] Padmavathi, V; Reddy, G; Padma A., Kondaiah, P; Shazia. A. Synthesis, antimicrobial and cytotoxic activities of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles Eur. J. Med. Chem., 2009, 44, 2106-2112. Google Scholar

  • [96] Javad, M; Farideh, S; Saeed, E; Fatemeh, S; Mohammad R.-K; Abbas, S; Alireza F. Synthesis and in vitro anti-Helicobacter pylori activity of N-Google Scholar

  • [5-(5-nitro-2- heteroaryl)-1,3,4-thiadiazol-2-yl]thiomorpholines and related compounds, Eur. J. Med. Chem., 2008, 43, 1575-1580. Google Scholar

  • [97] Schweitzer, P. Fundamentals of Metallic Corrosion, Atmospheric and media corrosion of metals, corrosion engineering Handbook, 2nd (Ed.), CRC Press, Taylor & Francis Group, LLC, Florida, USA, 2007. Google Scholar

  • [98] Frignani, A; Tassinari, M; Mészàros, L; Trabanelli, G. The use of electrochemical impedance spectroscopy to study ARMCO iron corrosion in acid solutions inhibited by quaternary ammonium compounds, Corros. Sci. 1991, 32, 903-911. Google Scholar

  • [99] Herrag, L.; Hammouti, B.; Elkadiri, S.; Aouniti, A.; Jama, C.; Vezin, H.; Bentiss, F. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corros. Sci., 2010, 52, 3042-3051. CrossrefGoogle Scholar

  • [100] Elkadi, L.; Mernari, B.;Traisnel, M.; Bentiss, F.; Lagrenee, M. The inhibition action of 3,6-bis(2-methoxyphenyl)-1,2- dihydro-1,2,4,5-tetrazine on the corrosion of mild steel in acidic media. Corros. Sci., 2000, 42, 703–719. CrossrefGoogle Scholar

  • [101] Zhang, S.; Tao, Z.; Liao, S.; Wu, F. Substitutional adsorption isotherms and corrosion inhibitive properties of some oxadiazol-triazole derivative in acidic solution. Corros. Sci., 2010, 52, 3126-3132. CrossrefGoogle Scholar

  • [102] Tang, Y.; Yang, X.; Yang, W.; Wan, R.; Chen, Y.; Yin, X. A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1,3,4-thi adiazole: Polarization, EIS and molecular dynamics simulations. Corros. Sci., 2010, 52, 1801–1808. Google Scholar

  • [103] Obot, I.; Obi-Egbedi, N. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation Corros. Sci., 2010, 52, 198-204. Google Scholar

  • [104] Hosseini, S.; Azimi, A. The inhibition of mild steel corrosion in acidic medium by 1-methyl-3-pyridin-2-yl-thiourea. Corros. Sci., 2009, 51, 728-732. CrossrefGoogle Scholar

  • [105] Asefi, D.; Arami, M.; Sarabi, A.-A.; Mahmoudi, N.-M. Corrosion Inhibition Effect of Cationic Surfactant on Steel in Acid Medium and Synergistic Effect of Chloride Ion and Some Alcohols. J. Color Sci. Tech., 2009, 4, 257-263. Google Scholar

  • [106] Chen, Q.; Zhang, D.; Li, R.; Liu, H.; Hu, Y. Effect of the spacer group on the behavior of the cationic Gemini surfactant monolayer at the air/water interface. Thin Solid Films, 2008, 516, 8782–8787. Google Scholar

  • [107] Migahed, M.-A.; Mohamed, H.-M.; Al-Sabagh, A.-M. Corrosion inhibition of H-11 type carbon steel in 1 M hydrochloric acid solution by N-propyl amino lauryl amide and its ethoxylated derivatives. Mater. Chem. Phys., 2003, 80, 169-175. Google Scholar

  • [108] Qiu, L.; Xie, A.; Shen, Y. Understanding the effect of the spacer length on adsorption of gemini surfactants onto steel surface in acid medium Appl. Surf. Sci. 2005, 246, 1–5. CrossrefGoogle Scholar

  • [109] Gece, G. Drugs: A review of promising novel corrosion inhibitors. Corros. Sci., 2011, 53, 3873–3898. CrossrefGoogle Scholar

  • [110] Abd EL-Rahman, N. M.; Saleh, T. S.; Mady, M. F., Ultrasound assisted synthesis of some new 1,3,4-thiadiazole and bi(1,3,4-thiadiazole) derivatives incorporating pyrazolone moiety, Ultrasonics Sonochemistry, 16, 2009, 70–74 Google Scholar

About the article

Received: 2015-12-10

Accepted: 2016-06-05

Published Online: 2016-04-20

Citation Information: Catalysis for Sustainable Energy, Volume 2, Issue 1, Pages 99–115, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2015-0009.

Export Citation

© 2016 Syed Sabir et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in