Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

One-pot synthesis of new Pyrido [2,3-d] Pyrimidine derivatives under ultrasonic irradiation using organo catalyst 4-Dimethylaminopyridine (DMAP)

Imtiyaz Rasool Parrey
  • Corresponding author
  • Department of Chemistry, Jamia Millia Islamia (Central University),New Delhi-110025 (India)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Athar Adil Hashmi
  • Corresponding author
  • Department of Chemistry, Jamia Millia Islamia (Central University),New Delhi-110025 (India)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/cse-2016-0002


The one-pot synthesis of pyrido[2,3-d] pyrimidine derivatives has been reported via Knoevenagel-Michal addition pathways using substituted aromatic aldehydes, Cyanoacetamide and 6-aminouracil in N,N-dimethylformamide (DMF) solvent, with 4-dimethylaminopyridine (DMAP) as new organo catalyst catalyst under ultrasonic irradiation. The results showed that a series of aromatic aldehydes were effectively used to prepare the targeted pyrido [2, 3-d] pyrimidine derivatives with good to excellent yields (81-93 %) with no major effect on the yield of product by electron donating/withdrawing substituents. Short reaction time, environment friendly procedure, excellent yields, inexpensive and readily available catalyst are the advantages of this procedure. All synthesized compounds were characterized by IR, 1HNMR, 13CNMR and mass spectral data.

This article offers supplementary material which is provided at the end of the article.

Keywords: Ultrasonic irradiation; 6-Aminouracil; 4-dimethylaminopyridine (DMAP); Substituted aldehydes; N, N-dimethyl formamide


  • [1] Abdolmohammadi, S., Afsharpour, M., 2012.Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chinese Chem. Letts. 23, 257-260. Google Scholar

  • [2] Agarwal, A., Ashutosh, R., Goyal, N., Chauhan, P. M. S., Gupta, S., 2005. Dihydropyrido [2,3-d]pyrimidines as a New Class of Antileishmanial Agents. J. Bioorganic & Med Chem. 13, 24, 6678-6684. Google Scholar

  • [3] Ajmal, R. B., Aabid, H. S., Rajendra, S. D., 2014. Synthesis of new annulated pyrano[2,3-d]pyrimidine derivatives using organo catalyst (DABCO) in aqueous media. J. Saudi Chem Soc. xxx–xxx, DOI: 10.1016/j.jscs.2014.03.008. CrossrefGoogle Scholar

  • [4] Ajmal, R. B., Rajendra, S. D., Rupali, S. S., 2014. Potent in vitro antibacterial and antifungal activities of pyrano[2,3-d ] pyrimidine derivatives with quantitative yield. Int. J. Pharma & Bio Sci. 5, 422– 430. Google Scholar

  • [5] Armstrong, R.W., Comba, A.P. Tempst, P.A., Brown, S., Keating, T.A., 1996. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res. 29, 123–131. CrossrefGoogle Scholar

  • [6] Asghari, S., Ramezania, S., Mohsenib, M., 2014. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl- 5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate. Chinese Chem. Letts. 25, 431–434. Google Scholar

  • [7] Berry, D. J., Digiovanna, C.V., Metric, S.S., Murugan, R., 2001. Catalysis by 4-dialkylaminopyridines. Arrivoc. 2, 944–964. Google Scholar

  • [8] Brana, M.F., Cacho, M., Garcia, M.L., Mayoral, E. P., Lopez, B., Teresa, B., 2005. Pyrazolo [3, 4-c] pyridazines as novel and selective inhibitors of cyclin dependent kinases. J. Med. Chem. 48, 22, 6843–6854. Google Scholar

  • [9] Bystryakova, D., Burova, O. A., Chelysheva, G. M., Zhilinkova, S. V., Smirnova, N. M., Safonova, T. S., 1991. Synthesis and Biological Activity of Pyrido[2,3-d]pyrimidine. J. Pharm. Chem. 25, 12, 874-876. Google Scholar

  • [10] Cravotto, G., Cintas, P., 2006. Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 35, 180-196. CrossrefGoogle Scholar

  • [11] Deb, M. L., Bhuyan, P. J., 2006. Synthesis of Novel Classes of Pyrido[2,3-d]- pyrimidines, Pyrano[2,3-d]pyrimidines and Pteridines. Synthetic Commun. 36, 3085-3090. CrossrefGoogle Scholar

  • [12] Desale, K.R., Nandre, K. P., Patil, S. L., 2012, p-Dimethylaminopyridine (DMAP): A highly efficient catalyst for one pot, solvent free synthesis of substituted 2-amino-2-chromenes under microwave irradiation. Org. Commun. 5, 179-185. Google Scholar

  • [13] Deyanov, A. B., Niyazov, R. K., Nazmetdivov, F. Y., Syropyatov, B. Y., Kolla, V. E., Konshin, M. E., 1991. Synthesis and Biological Activity of Amides and Nitriles of 2- Arylamino- 5-carboxy(carbethoxy)-6-methylnicotinic ac-ids and 1-aryl-6-carbethoxy-7-methyl-4-oxo-1,4-dihydro- pyrido[2,3-d] pyramidine. J. Pharm. Chem. 25, 248-250. CrossrefGoogle Scholar

  • [14] Donkor, I.O., Klein, C. L., Liang, L., Zhu, N., Bradley, E., Clark, A. M., 1995. Synthesis and Antimicrobial Activity of Some 6,7-Annulated Pyrido[2,3-d]pyrimidine. J. Pharm. Sci.84, 661- 664. CrossrefGoogle Scholar

  • [15] Ellingboe, J. W., Princeton, N. J., 1996. Substituted Pyridopyrimidines and Antihypertensives. Chemical Abstracts, 124, Article ID: 176134q. Google Scholar

  • [16] Fayed, A.A., Hosni, H. M., Flefel, E.M., Amr, A.E., 2009. Synthesis and pharmacological activities of some new thieno [2,3-d ] pyrimidine and pyrimidino pyrazolo thieno pyrimidine derivatives. W. J. Chem. 4, 58-65. Google Scholar

  • [17] Frizzo, C. P., Scapin, E., Marzari, M. R.B., München, T. S., Zanatta, N., Bonacorso, H. G., Buriol, L., Martins, M.A.P., 2014. Ultrasound irradiation promotes the synthesis of new 1,2,4-triazolo [1,5-a]pyrimidine. Ultrason. Sonochem.21, 958–962. Web of ScienceCrossrefGoogle Scholar

  • [18] Goharshadi, E.K., Ding, Y., Jorabachi, N.M., Nancarrow, P., 2009. Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason. Sonochem. 16, 120–123. Web of ScienceCrossrefGoogle Scholar

  • [19] Grivsky, E. M., Lee, S., Sigel, C. W., Duch, D. S., Nichol, C. A., 1880. Synthesis and Antitumor Activity of 2,4-Dia- mino-6-(2,5- dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. J. Med. Chem. 23, 327-329. Google Scholar

  • [20] Heck, S., Domling, A., 2000. A versatile multi-component one-pot thiazole synthesis. Synlett. 424–426. Google Scholar

  • [21] Iskalieva, A., Yimmou, B.M., Gogate, P. R., Horvath, M., Horvath, P.G., Csoka, L., 2012. Ultrason. Sonochem. 19, 984. CrossrefGoogle Scholar

  • [22] Jiang, B., Rajale, T.,Wever, W., Tu, S. J., Li, G., 2010. Multicomponent Reactions for the Synthesis of Heterocycles. An Asian J. 5, 2318–2335. Google Scholar

  • [23] Jieping, Z., 2003. Recent Developments in the Isonitrile- Based Multicomponent Synthesis of Heterocycles. Eur. J. Org. Chem.1133-1144. Google Scholar

  • [24] Khan, T., Lal, M., Ali, S., Khan, M. M., 2011. One-pot threecomponent reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett. 52, 5327-5332. CrossrefGoogle Scholar

  • [25] Klemenc, S., 2002. 4-Dimethylaminopyridine as a catalyst in heroin synthesis. Forensic Sci. Intern.129, 194–199. Google Scholar

  • [26] Kolla, V. E., Deyanov, A. B., Nazmetdinov, F. Y., Kashina, Z. N., Drovosekova, L. P., 1993. Investigation of the Anti-Inflammatory and Analgesic Activity of 2-Substituted1-Aryl-6-carboxy- (carbethoxy)-7-methyl-4-oxo-1,4- dihydropyrido[2,3-d] pyramidine. J.Pharm. Chem. 27, No. 9. Google Scholar

  • [27] Kumar, V., Sharma, A., Sharma, M., Sharma, U. K., Sinha, A.K., 2007. DDQ catalyzed benzylic acetoxylation of arylalkanes: a case of exquisitely controlled oxidation under sonochemical activation. Tetrahedron, 63, 9718–9723. Web of ScienceCrossrefGoogle Scholar

  • [28] Mahdavinia, G.H., Rostamizadeh, S., Amani, A.M., Emdadi, Z., 2009. Ultrasound promoted greener synthesis of aryl-14-Hdibenzo[ a,j]xanthenes catalyzed by NH4H2PO4/SiO2 in water. Ultrason. Sonochem., 16, 7–10. CrossrefGoogle Scholar

  • [29]Monge, A., Martinez-Merino, V., Sanmartin, C., Fernandez, F. J., Ochoa, M. C., Berllver, C., Artigas, P.,Fernandez- Alvarez,E.,1989.2-Arylamino-4-oxo-3,4-dihydropyrido-[2,3-d] pyrimidines: Synthesis and Diuretic Activity. Eur. J. Med. Chem. 24, 209. Google Scholar

  • [30] Mason, T.J., in: Mason (Ed.), T.J. 1990. Chemistry with Ultrasound. Elsevier, London. Mosslemin, M. H., Nateghi, M. R., 2010. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem.17, 162–167. Google Scholar

  • [31] Nargund, L. V. G., Reddy, Y. S. R., Jose, R., 1991. Synthesis and Antibacterial Activity of Pyrido[1, 2-a]pyrimidin-4 (1H)-Ones. Indian Drugs. 29, 45-46. Google Scholar

  • [32] Pastor, A., Alajarin, R., Vaquero, J. J., Alvarez-Builla, J., Casa-Juana, M. F., Sunkel, C., Priego, J. G., Fonseca, I., Sanz-Aparicio, J., 1994. Synthesis and Structure of New Pyrido[2,3-d]pyrimidine Derivatives with Calcium Channel Antagonist Activity. Tetrahedron, 50, 27, 8085-8098. Google Scholar

  • [33] Piaz, V. D., Castellana, M.C., Vergelli, C., Giovannoni, M.P., Gavalda, A., Segarra, V., Beleta, J., 2002. Synthesis and evaluation of some pyrazolo[3, 4-d] pyridazinones and analogues as PDE5 inhibitors potentially useful as peripheral vasodilator agents. J. Enz. Inhib. Med. Chem. 17, 227-233. Google Scholar

  • [34] Posner, G. H., 1986. Multicomponent one-pot annulations forming three to six bonds. Chem. Rev. 86, 831–844. CrossrefGoogle Scholar

  • [35] Rahmati, A., Khalesi, Z., 2012. Catalyst free synthesis of fused pyrido[2,3-d]pyrimidines and pyrazolo[3,4-b]pyridines in water. Chinese Chem. Letts. 23, 1149-1152. Google Scholar

  • [36] Rahman, N.M. A., Saleh, T. S., Mady, M. F., 2009. Ultrasound assisted synthesis of some new 1,3,4-thiadiazole and bi(1,3,4- thiadiazole) derivatives incorporating pyrazolone moiety. Ultrason. Sonochem. 16, 70–74. Web of ScienceGoogle Scholar

  • [37] Rosowsky, A., Mota, C. E., Queener, S. F., 1995. Synthesis and Antifolate Activity of 2,4-Diamino-5,6,7,8-tetrahydropyrido[ 4,3-d]pyrimidine Analogues of Trimetrexate and Piritrexim. J. of Heterocyclic Chem. 32, 335-340. Google Scholar

  • [38] Saladowska, H., Bartoszko-Malik, A., Zawisza, T., 1990. Synthesis and Properties of New Derivatives of Ethyl7-Methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido [2,3-d] pyrimidine-5-carboxylate. Farmaco, 45, 101-110. Google Scholar

  • [39] Samai, S., Nandi, G. C., Chowdhury, S., Singh, M. S., 2011.L-Proline catalyzed synthesis of densely functionalizedpyrido[2,3-d]pyrimidinesviathree-component one-pot domino Knoevenagel aza-DielseAlder reaction. Tetrahedron, 67, 5935-5941. CrossrefGoogle Scholar

  • [40] Sarma, R., Borah, K. J., Dommaraju Y., Prajapati. D., 2011. Unexpected deviation from diene behaviour of uracil amidine: towards synthesis of some pyrido[2,3-d]pyrimidine derivatives. Mol Divers. 15, 697–705. CrossrefWeb of ScienceGoogle Scholar

  • [41] Satasia, S. P., Kalaria, P.N., Raval, D. K., 2014. Catalytic regioselective synthesis of pyrazole based pyrido[2,3-d] pyrimidine-diones and their biological evaluation. Org. Biomol. Chem. 12, 1751. CrossrefWeb of ScienceGoogle Scholar

  • [42] Suzuki, N., 1980. Synthesis of Antimicrobial Agents. V. Synthesis and Antimicrobial Activities of Some Heterocyclic Condensed 1, 8-Naphthyridine Derivatives. Chemical & Pharm. Bulletin. 28, 3, 761- 768. CrossrefGoogle Scholar

  • [43] Sweeney, Z.K., Harris, S.F., Arora, N. N., Javanbakht, H. H., Li, Y.Y., Fretland, J. J., 2008. Design of annulated pyrazoles as inhibitors of HIV-1 reverse transcriptase. J. Med. Chem. 51, 23, 7449–7458. Web of ScienceGoogle Scholar

  • [44] Takayoshi, K., Masaichi, W., Makoto, O., Kentaro, S., Masahiro, N., Takashi, F., 2006.Crystal structure of human ERK2 complexed with a pyrazolo[3, 4-c]pyridazine derivatives. Bioorg. Med. Chem. Lett. 16, 55-58. Google Scholar

  • [45] Thompson, A. M., Bridges, A. J., Fry, D. W., Kraker, A. J., Denny, W. A., 1995. Tyrosine Kinase Inhibitors.7.7-amino-4- (phenylamino)-and7-amino-4-[(phenylmethyl)amino] pyrido [4,3-d]pyrimidines: A New Class of Inhibitors of the Tyrosine Kinase Activity of the Epidermal Growth Factor Receptor. J. Med. Chem. 38, 780-3788. Google Scholar

  • [46] Ugi, I., Domling, A., Horl, W., 1994. Multicomponent reactions in organic chemistry. Endeavour, 18, 115–122. Weber, L., 2002. The application of multi-component reactions in drug discovery. Curr. Med. Chem. 9, 2085. Google Scholar

  • [47] Weber, L., Illegel, K., Almstetter, M., 1999. Discovery of new multi component reactions with combinatorial method. Synlett.366–374. CrossrefGoogle Scholar

About the article

Received: 2016-01-24

Accepted: 2016-03-29

Published Online: 2016-12-30

Citation Information: Catalysis for Sustainable Energy, Volume 3, Issue 1, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2016-0002.

Export Citation

© 2016 Imtiyaz Rasool Parrey, Athar Adil Hashmi . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in