Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Mixed spinel-type Ni-Co-Mn oxides: synthesis, structure and catalytic properties

Ekaterina M. Sadovskaya
  • Corresponding author
  • Boreskov Institute of Catalysis, 630090, Novosibirsk, Russia
  • Novosibirsk State University, 630090, Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitry D. Frolov
  • Corresponding author
  • Lomonosov Moscow State University, Department of Chemistry, 119991, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir B. Goncharov / Anna A. Fedorova
  • Corresponding author
  • Lomonosov Moscow State University, Department of Chemistry, 119991, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor V. Morozov
  • Corresponding author
  • Lomonosov Moscow State University, Department of Chemistry, 119991, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Yu. Klyushin
  • Corresponding author
  • V.A. Fock Institute of Physics, St. Petersburg State University, 198504, St.Petersburg, Russia
  • Division Energy Material, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander S. Vinogradov
  • Corresponding author
  • V.A. Fock Institute of Physics, St. Petersburg State University, 198504, St.Petersburg, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ekaterina A. Smal / Vladislav A. Sadykov
  • Corresponding author
  • Boreskov Institute of Catalysis, 630090, Novosibirsk, Russia
  • Novosibirsk State University, 630090, Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/cse-2016-0005

Abstract

Mixed spinel-type oxides Co1.8Mn1.2O4, Ni0.33Co1.33Mn1.33O4 and Ni0.6Co1.2Mn1.2O4 prepared by thermal decomposition of nitrates have been studied in ethanol steam reforming reaction. Ni0.6Co1.2Mn1.2O4 demonstrated the highest activity among the oxides tested. Specificity of the cation distribution in the samples and their oxygen mobility have been studied by X-ray absorption spectroscopy and oxygen isotope heteroexchange, respectively. Doping of mixed cobalt-manganese spinel with Ni results in Mn redistribution between 3+ and 4+ oxidation states, thus increasing oxygen diffusion coefficient and the catalytic activity.

Keywords: Spinel; Ethanol steam reforming; Oxygen isotope exchange; X-ray absorption spectroscopy

References

  • [1] Diagne C., Idriss H., Pearson K., Gomez-Garcia M.A., Kiennemann A., Efficient hydrogen production by ethanol reforming over Rh catalysts. Effect of addition of Zr on CeO2 for the oxidation of CO to CO2, C. R. Chim., 2004, 7, 617-622. Google Scholar

  • [2] Liguras D.K., Kondarides D.I., Verykios X.E., Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Appl. Catal., B, 2003, 43, 345-354. Google Scholar

  • [3] Zhang B., Cai W., Li Y., Xu Y., Shen W., Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: reaction mechanism and stability of the catalyst, Int. J. Hydrogen Energy, 2008, 33, 4377–4386. Web of ScienceGoogle Scholar

  • [4] Llorca J.H., Homs N., Sales J., de la Piscina R.P., Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming, J. Catal., 2002, 209, 306-317. Google Scholar

  • [5] Calles J.A., Carrero A., VizcaÌno A.J., Lindo M., Hydrogen Production by Ethanol Steam Reforming on Ni/SiO2 Catalysts: Effect of Ce and Zr Incorporation, Proceedings of the WHEC, (16-21 May 2010, Essen), 2010, 411-418. Google Scholar

  • [6] Seker E., The catalytic reforming of bio-ethanol over SiO2 supported ZnO catalysts: The role of ZnO loading and the steam reforming of acetaldehyde, Int. J. Hydrogen Energy, 2008, 33, 2044-2052. Google Scholar

  • [7] Nishiguchi T., Matsumoto T., Kanai K., Utani K., Matsumura Y., Shen W.J., Imamura S., Catalytic steam reforming of ethanol to produce hydrogen and acetone, Appl. Catal., A, 2005, 279, 273-277 Google Scholar

  • [8] Chiou J.Y.Z., Wang W.Y., Yang S.Y., Lai C.L., Huang H.H., Wang C.B., Ethanol steam reforming to produce hydrogen over Co/ ZnO and PtCo/ZnO catalysts, Catal. Lett., 2013, 143, 501-507. Web of ScienceGoogle Scholar

  • [9] Cobo M., Pieruccini D., Abello R., Ariza L., Cordoba L.F., Conesa J.A., Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions, Int. J. Hydrogen Energy, 2013, 38, 5580-5593. Google Scholar

  • [10] Lin K.H., Wang C.B., Chien S.H., Catalytic performance of steam reforming of ethanol at low temperature over LaNiO3 perovskite, Int. J. Hydrogen Energy, 2013, 38, 3226-3232. Google Scholar

  • [11] Machocki A., Denis A., Grzegorczyk W., Gac W., Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol, Appl. Surf. Sci., 2010, 256, 5551-5558. Google Scholar

  • [12] Koh A.C.W., Leong W.K., Chen L., Ang T.P., Lin J., Johnson B.F.G., Khimyak T., Highly efficient ruthenium and ruthenium-platinum cluster-derived nanocatalysts for hydrogen production via ethanol steam reforming, Catal. Commun., 2008, 9, 170-175. Web of ScienceGoogle Scholar

  • [13] V.A. de la Peña O‘Shea, Homs N., Pereira E.B., Nafria R., de la Piscina R.P., X-ray diffraction study of Co3O4 activation under ethanol steam-reforming, Catal. Today, 2007, 126, 148-152. Google Scholar

  • [14] Muroyama H., Nakase R., Matsui T., Eguchi K., Ethanol steam reforming over Ni-based spinel oxide, Int. J. Hydrogen Energy, 2010, 35, 1575-1581. Google Scholar

  • [15] Barroso M.N., Gomez M.F., Arrúa L.A., Abello M.C., Reactivity of Aluminum Spinels in the Ethanol Steam Reforming Reaction, Catal. Lett., 2006, 109, 13-19. Google Scholar

  • [16] Hull S., Trawczyński J., Steam reforming of ethanol on zinc containing catalysts with spinel structure, Int. J. Hydrogen Energy, 2014, 39, 4259-4265. Google Scholar

  • [17] Aupretre F., Descorme C., Duprez D., Casanave D., Uzio D., Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxidesupported Rh catalysts, J. Catal., 2005, 233, 464-477. Google Scholar

  • [18] Busca G., Costantino U., Montanari T., Ramis G., Resini C., Sisani M., Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors, Int. J. Hydrogen Energy, 2010, 35, 5356-5366. Web of ScienceGoogle Scholar

  • [19] Velu S., Suzuki K., Vijayaraj M., Barman S., Gopinath C.S., In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol, Appl. Catal., B, 2005, 55, 287-299. Google Scholar

  • [20] Sadykov V., Mezentseva N., Simonov M., Smal E., Arapova M., Pavlova S., Fedorova Y., Chub O., Bobrova L., Kuzmin V, et al., Structured nanocomposite catalysts of biofuels transformation into syngas and hydrogen: Design and performance, Int. J. Hydrogen Energy, 2015, 40, 7511-7522. Web of ScienceGoogle Scholar

  • [21] Fedoseenko S.I., Iossifov I.E., Gorovikov S.A., Schmidt J.H., Follath R., Molodtsov S.L., Adamchuk V.K., Kaindl G,. Development and Present Status of the Russian-German Soft X-ray Beamline at BESSY II, Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 470, 84-88. Google Scholar

  • [22] Vinogradov A.S., Fedoseenko S.I., Krasnikov S.A., Preobrajenski A.B., Sivkov V.N., Vyalikh D.V., Molodtsov S.L., Adamchuk V.K., Laubschat C., Kaindl G., Low-lying unoccupied electronic states in 3d transition-metal fluorides probed by NEXAFS at the F 1s threshold, Phys. Rev. B, 2005 71, 045127. Google Scholar

  • [23] Sadovskaya E.M., Ivanova Y.A., Pinaeva L.G., Grasso G., Kuznetsova T.G., A. van Veen, Sadykov V.A., Mirodatos C., Kinetics of Oxygen Exchange over CeO2−ZrO2 Fluorite-Based Catalysts, J. Phys. Chem. A, 2007, 111, 4498–4505. Google Scholar

  • [24] F. M. F. de Groot, Fuggle J.C., Thole B.T., Sawatzky G.A., 2p X-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field, Phys. Rev. B, 1990, 42, 5459. Google Scholar

  • [25] F.M.F. de Groot, Abbate M., J. van Elp, Sawatzky G.A., Ma Y.J., Chen C.T., Sette F., Oxygen 1s and cobalt 2p X-ray absorption of cobalt oxides, J. Phys: Condens. Matter, 1993, 5, 277-2288. Google Scholar

  • [26] Sherman D.M., The electronic structures of manganese oxide minerals, Am. Mineralogist, 1984, 69, 788-799. Google Scholar

  • [27] Lee S., Hoffmann R., Bcc and Fcc Transition Metals and Alloys: A Central Role for the Jahn-Teller Effect in Explaining Their Ideal and Distorted Structures. Am. Chem. Soc., 2002, 124, 4811-4823. Google Scholar

  • [28] Sadykov V.A., Razdobarov V.A., Veniaminov S.A., Bulgakov N.N., Kovalenko O.N., Pankratyev Yu.D., Popovskii V.V., Kryukova G.N., Tikhov S.F., Nature of the active oxygen of Co3O4, React. Kinet. Catal. Lett., 1988, 37, 109-114. Google Scholar

  • [29] Szijjarto G.P., Paszti Z., Sajo I., Erdohelyi A., Radnoczi G., Tompos A., Nature of the active sites in Ni/MgAl2O4-based catalysts designed for steam reforming of ethanol, J. Catal., 2013, 305, 290-306. Google Scholar

  • [30] Szijjarto G.P., Tompos A., Margitfavi J.L., High-throughput and combinatorial development of multicomponent catalysts for ethanol steam reforming, Appl. Catal., A, 2011, 391, 417-426. Web of ScienceGoogle Scholar

About the article

Received: 2016-08-23

Accepted: 2016-09-01

Published Online: 2016-12-30


Citation Information: Catalysis for Sustainable Energy, Volume 3, Issue 1, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2016-0005.

Export Citation

© 2016 Ekaterina M. Sadovskaya et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in