Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Glass fiber supports modified by layers of silica and carbon nanofibers

Maxim V. Popov / Sergey V. Zazhigalov / Tatyana V. Larina / Svetlana V. Cherepanova / Alexander G. Bannov / Sergey A. Lopatin / Andrey N. Zagoruiko
  • Corresponding author
  • Tomsk Polytechnic University, Lenina, 30, Tomsk, 634050 Russian Federation
  • Tomsk Polytechnic University, Lenina, 30, Tomsk, 634050 Russian Federation
  • Boreskov Institute of Catalysis, Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-12 | DOI: https://doi.org/10.1515/cse-2017-0001


The new multi-layered composite was manufactured by deposition of the carbon nanofibers (CNF) at the surface of the glass-fiber fabric, which is pre-modified by application of additional external layers of NiO and porous silica. Carbonization of synthesized catalytic template was performed at 450 °C in propanebutane media at ambient pressure. CNF was deposited in amount of ~130% of initial template mass or 65 g per g of nickel, the specific surface area of the material is ~100 m2/g. The synthesized material has high mechanical strength, high hydrophobicity and strong bonding between CNF and glass-fiber support. The synthesis method is technologically simple, inexpensive and easily scalable. It is possible to manufacture such material in various solid shapes, using the flexibility of the primary glass-fiber support; in particular, it may be used for production of the mechanically self-sustainable catalytic cartridges with required shape and internal geometry using no additional structuring elements.

Keywords: glass fiber catalyst; pyrolysis; nickel; template; carbon nanofibers


  • [1] S. Lopatin, P. Mikenin, D. Pisarev, D. Baranov, S. Zazhigalov, A. Zagoruiko. Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst, Chem. Eng. J., 2015, 282, 58-65.Web of ScienceGoogle Scholar

  • [2] B.S. Balzhinimaev, E.A. Paukshtis, S.V. Vanag, A.P. Suknev, A.N. Zagoruiko. Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection, Catal. Today, 2010, 151, 195-199.Web of ScienceGoogle Scholar

  • [3] P.E. Mikenin, P.G. Tsyrul’nikov, Yu.S. Kotolevich, A.N. Zagoruiko. Vanadium Oxide Catalysts on Structured Microfiber Supports for the Selective Oxidation of Hydrogen Sulfide, Catal. in Industry, 2015, 2, 155-160.Google Scholar

  • [4] S. Zazhigalov, A. Elyshev, S. Lopatin, T. Larina, S. Cherepanova, P. Mikenin, D. Pisarev, D. Baranov, A. Zagoruiko. Copperchromite glass fiber catalyst and its performance in the test reaction of deep oxidation of toluene in air, React. Kinet. Mech. Cat., (in press), DOI: 10.1007/s11144-016-1089-3.CrossrefGoogle Scholar

  • [5] P. Mikenin, S. Zazhigalov, A. Elyshev, S. Lopatin, T. Larina, S. Cherepanova, D. Pisarev, D. Baranov, A. Zagoruiko, Iron oxide catalyst at the modified glass fiber support for selective oxidation of H2S, Catal. Commun., 2016, 87, 36-40.Web of ScienceGoogle Scholar

  • [6] C. Tran, R. Singhal, D. Lawrence, V. Kalra, Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors, J. Power Sources, 2015, 293, 373-379.Web of ScienceGoogle Scholar

  • [7] C.-C. Lai, C.-T. Lo, Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors, Electrochim. Acta, 2015, 183, 85-93.Web of ScienceGoogle Scholar

  • [8] S. Peng, L. Li, J. Kong Y. Lee, L. Tian, M. Srinivasan, S. Adams, S. Ramakrishna, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Energy, 2016, 22, 361-395.Web of ScienceGoogle Scholar

  • [9] R.K. Bera, S.G. Mhaisalkar, D. Mandler, S. Magdassi, Formation and performance of highly absorbing solar thermal coating based on carbon nanotubes and boehmite, Energ. Convers. Manage., 2016, 120, 287-293.Web of ScienceGoogle Scholar

  • [10] H. Hanaei, M. Assadi, R. Saidur, Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review, Renew. and Sustain. Energy Rev., 2016, 59, 620-635.Google Scholar

  • [11] A.J. Ferguson, J.L. Blackburn, N. Kopidakis, Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics, Mater. Lett., 2013, 90, 115-125.Web of ScienceGoogle Scholar

  • [12] I.N. Mazov, I.A. Ilinykh, V.L. Kuznetsov, A.A. Stepashkin, K.S. Ergin, D.S. Muratov, V.V. Tcherdyntsev, D.V. Kuznetsov, J.-P. Issi, Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology, J. Alloy Compd., 2014, 586, S440-S442.Web of ScienceGoogle Scholar

  • [13] J. Macutkevic, P. Kuzhir, D. Seliuta, G. Valusis, J. Banys, A. Paddubskaya, D. Bychanok, G. Slepyan, S. Maksimenko, V. Kuznetsov, et al., Dielectric properties of a novel high absorbing onion-like-carbon based polymer composite, Diam. Relat. Mater., 2010, 19, 91-99.CrossrefWeb of ScienceGoogle Scholar

  • [14] P. Kuzhir, S. Maksimenko, D. Bychanok, V. Kuznetsov, S. Moseenkov, I. Mazov, O. Shenderova, Ph. Lambin, Nano-scaled onion-like carbon: Prospective material for microwave coatings, Metamaterials, 2009, 3, 148-156.Google Scholar

  • [15] Kuvshinov G.G., Mogilnykh Yu.I., Kuvshinov D.G., Ermakov D.Yu., Ermakova M.A., Salanov N.A., Rudina N.A. Carbon, 1999, 37, 1239-1246.Google Scholar

  • [16] Popov M.V., Shinkarev V.V., Brezgin P.I., Solov’ev Е.А., Kuvshinov G.G, Kinet. Catal., 2013, 54, 481-486.Google Scholar

  • [17] Z.R. Ismagilov, N.V. Shikina, V.N. Kruchinin, N.A. Rudina, V.A. Ushakov, N.T. Vasenin, H.J. Veringa, Development of methods of growing carbon nanofibers on silica glass fiber supports, Catal. Today, 2005, 102-103, 85-93.Google Scholar

  • [18] S.A. Lopatin, P.G. Tsyrul’nikov, Yu.S. Kotolevich, P.E. Mikenin, D.A. Pisarev, A.N.Zagoruiko, Structured Woven Glass-Fiber IC-12-S111 Catalyst for the Deep Oxidation of Organic Compounds, Catal. in Industry, 2015, 7, 329-334.Google Scholar

  • [19] Y.S. Kotolevich, E.V. Khramov, O.O. Mironenko, Ya.V. Zubavichus, V.Yu. Murzin, D.I.Frey, S.E. Metelev, N.B. Shitova, P.G. Tsyrulnikov, Supported Palladium Catalysts Prepared by Surface Self-Propagating Thermal Synthesis, Int. J. of Self-Propagating High-Temperature Synthesis, 2014, 23, 9-17.Google Scholar

  • [20] W.I.F. David, K. Shankland, L.B. McCusker, Ch. Baerlocher, Structure determination form powder diffraction data IUCr Monographs on crystallography, Oxford Science publications, Oxford, 2002.Google Scholar

  • [21] Becerra, A.M., Castro-Luna, A.E, An investigation on the presence of NiAl2O4 in a stable Ni on alumina catalyst for dry reforming, J. Chil. Chem. Soc., 2005, 50, 465-469.Google Scholar

About the article

Received: 2017-02-07

Accepted: 2017-02-25

Published Online: 2017-04-12

Published in Print: 2017-04-01

Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 1–6, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vasiliy Shinkarev, Gennady Kuvshinov, and Andrey Zagoruiko
Reaction Kinetics, Mechanisms and Catalysis, 2017

Comments (0)

Please log in or register to comment.
Log in