Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Mechanochemically synthesized LiAlOx catalyst for aqueous aldol condensation of furfural with acetone

L. N. Stepanova
  • Corresponding author
  • Institute of Hydrocarbons Processing, Siberian Branch of Russian Academy of Sciences, Neftezavodskaya st., 54, 644040 Omsk, Russian Federation
  • Dostoevsky Omsk State University, Mira ave., 55a, 644077 Omsk, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. M. Mironenko
  • Institute of Hydrocarbons Processing, Siberian Branch of Russian Academy of Sciences, Neftezavodskaya st., 54, 644040 Omsk, Russian Federation
  • Dostoevsky Omsk State University, Mira ave., 55a, 644077 Omsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ O. B. Belskaya
  • Institute of Hydrocarbons Processing, Siberian Branch of Russian Academy of Sciences, Neftezavodskaya st., 54, 644040 Omsk, Russian Federation
  • Omsk State Technical University, Mira ave., 11, 644050 Omsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. A. Likholobov
  • Institute of Hydrocarbons Processing, Siberian Branch of Russian Academy of Sciences, Neftezavodskaya st., 54, 644040 Omsk, Russian Federation
  • Omsk State Technical University, Mira ave., 11, 644050 Omsk, Russian Federation
  • Omsk Scientific Centre, Siberian Branch of Russian, Academy of Sciences, Karla Marksa ave., 15, 644024 Omsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-28 | DOI: https://doi.org/10.1515/cse-2017-0003


In the present study, the mechanochemical method is proposed for synthesis of LiAl-layered double hydroxides (LDHs). This method is eco-friendly and allows obtaining LiAl-LDH under relatively mild conditions (centripetal acceleration of milling bodies 300 m s-2) and in a short period of time (15 minutes). The structures of as-prepared LiAl-LDH, LiAl-mixed oxide (calcined LDH) and “activated” LiAl-LDH obtained after rehydration of the corresponding mixed oxide were confirmed by X-ray diffraction. The basicity of LiAlOx was measured by temperature-programmed desorption of CO2 and double isotherm technique. According to data obtained, LiAl-mixed oxide has a significant higher carbon dioxide adsorption capacity compared to MgAlmixed oxides prepared by conventional co-precipitation method. This indicates a large amount of basic surface sites with different strength (strong, medium and weak) for Li-containing systems. The formation of “activated” LiAl-LDH having Bronsted basic sites (OH groups in the interlayer space) provides an increased catalytic activity of LiAlOx in the reaction of aqueous-phase aldol condensation between furfural and acetone.

Keywords: layered double hydroxides; mechanical activation; aqueous-phase processing; furfural; aldol condensation


  • [1] Farmer T.J., Mascal M., Platform molecules, In: Clark J., Deswarte F. (Eds.), Introduction to chemicals from biomass, 2nd ed., John Wiley & Sons, Chichester, 2015.Google Scholar

  • [2] Sheldon R.A., Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem., 2014, 16, 950-963.CrossrefGoogle Scholar

  • [3] Luterbacher J.S., Alonso D.M., Dumesic J.A., Targeted chemical upgrading of lignocellulosic biomass to platform molecules, Green Chem., 2014, 16, 4816-4838.CrossrefGoogle Scholar

  • [4] Yan K., Wu G., Lafleur T., Jarvis C., Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals, Renewable Sustainable Energy Rev., 2014, 38, 663-676.Google Scholar

  • [5] Cai C.M., Zhang T., Kumar R., Wyman C.E., Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass, J. Chem. Technol. Biotechnol., 2014, 89, 2-10. Google Scholar

  • [6] Mariscal R., Maireles-Torres P., Ojeda M., Sadaba I., Lopez Granados M., Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels, Energy Environ. Sci., 2016, 9, 1144-1189. CrossrefGoogle Scholar

  • [7] Fakhfakh N., Cognet P., Cabassud M., Lucchese Y., Dias de Los Rios M., Stoichio-kinetic modeling and optimization of chemical synthesis: application to the aldolic condensation of furfural on acetone, Chem. Eng. Process., 2008, 47, 349-362. Google Scholar

  • [8] Gandini A., Belgacem M.N., Furans in polymer chemistry, Prog. Polym. Sci., 1997, 22, 1203-1379. Google Scholar

  • [9] Bessonov I.V., Kopitsyna M.N., Nelyub V.A., Synthesis of furfurylideneacetones and their application as active diluents for epoxy resins fabrication, Russ. J. Gen. Chem., 2014, 84, 2439-2444. CrossrefGoogle Scholar

  • [10] Sun H., Wang X., Li G., Zhang L., Liu J., Zhao L., Design, synthesis and biological evaluation of novel C3-functionalized oxindoles as potential Pim-1 kinase inhibitors, RSC Adv., 2015, 5, 29456-29466. Google Scholar

  • [11] Datta A., Walia S., Parmar B.S., Some furfural derivatives as nitrification inhibitors, J. Agric. Food Chem., 2001, 49, 4726-4731. Google Scholar

  • [12] Liu Y., Kang T.-R., Liu Q.-Z., Chen L.-M., Wang Y.-C., Liu J., Xie Y.-M., Yang J.-L., He L., Enantioselective [4+2] cycloaddition of cyclic N-sulfimines and acyclic enones or ynones: a concise route to sulfamidate-fused 2,6-disubstituted piperidin-4-ones, Org. Lett., 2013, 15, 6090-6093. Google Scholar

  • [13] Yang J., Li N., Li G., Wang W., Wang A., Wang X., Cong Y., Zhang T., Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone, ChemSusChem, 2013, 6, 1149-1152. CrossrefGoogle Scholar

  • [14] Faba L., Diaz E., Ordonez S., One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis, ChemSusChem, 2014, 7, 2816-2820. CrossrefGoogle Scholar

  • [15] Nakagawa Y., Liu S., Tamura M., Tomishige K., Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes, ChemSusChem, 2015, 8, 1114-1132. Google Scholar

  • [16] Hinz A., Meyer G., Schucking G., Uber einige Furanderivate und deren katalytische Hydrierung, Ber. Dtsch. Chem. Ges., 1943, 76, 676-689. CrossrefGoogle Scholar

  • [17] Nielsen A.T., Houlihan W.J., The aldol condensation, John Wiley & Sons, New York, 1968.Google Scholar

  • [18] Rule N.G., Detty M.R., Kaeding J.E., Sinicropi J.A., Syntheses of 4H-thiopyran-4-one 1,1-dioxides as precursors to sulfonecontaining analogues of tetracyanoquinodimethane, J. Org. Chem., 1995, 60, 1665-1673. Google Scholar

  • [19] Mallik A.K., Pal R., Mandal T.K., Facile formation of bis(3-indolyl)methylarenes by iodine-catalyzed reaction of indole with α,α’-bis(arylmethylene)ketones and α-substituted arylmethyleneketones in dry ethanol, Indian J. Chem. B, 2007, 46, 2056-2059. Google Scholar

  • [20] Acetti D., Brenna E., Fuganti C., Gatti F.G., Serra S., Baker’s yeast reduction of β-hydroxy ketones, Eur. J. Org. Chem., 2010, 142-151. CrossrefGoogle Scholar

  • [21] Chimni S.S., Mahajan D., Electron deficiency of aldehydes controls the pyrrolidine catalyzed direct cross-aldol reaction of aromatic/heterocyclic aldehydes and ketones in water, Tetrahedron, 2005, 61, 5019-5025. Google Scholar

  • [22] Fernandez-Lopez R., Kofoed J., Machuqueiro M., Darbre T., A selective direct aldol reaction in aqueous media catalyzed by zinc-proline, Eur. J. Org. Chem., 2005, 5268-5276. CrossrefGoogle Scholar

  • [23] Zhang Y., Wang M.G., Liang J., Shang Z.C., An environmentfriendly and efficient method for aldol condensation catalyzed by L-lysine in pure water, Lett. Org. Chem., 2010, 7, 27-31. Google Scholar

  • [24] Wang B., Liu X., Liu L., Chang W., Li J., Highly efficient direct asymmetric aldol reactions catalyzed by a prolinethioamide derivative in aqueous media, Eur. J. Org. Chem., 2010, 5951-5954. CrossrefGoogle Scholar

  • [25] Yang S.-D., Wu L.-Y., Yan Z.-Y., Pan Z.-L., Liang Y.-M., A novel ionic liquid supported organocatalyst of pyrrolidine amide: synthesis and catalyzed Claisen-Schmidt reaction, J. Mol. Catal. A: Chem., 2007, 268, 107-111. Google Scholar

  • [26] Wang Y., Gong X., Dai L., Claisen-Schmidt condensation catalyzed by basic ionic liquids, Youji Huaxue, 2009, 29, 1470-1473, (in Chinese). Google Scholar

  • [27] Sharma N., Sharma U.K., Kumar R., Katoch N., Kumar R., Sinha A.K., First bovine serum albumin-promoted synthesis of enones, cinnamic acids and coumarins in ionic liquid: an insight into the role of protein impurities in porcine pancreas lipase for olefinic bond formation, Adv. Synth. Catal., 2011, 353, 871-878.Google Scholar

  • [28] Zhou S., Liu L., Wang B., Ma M., Xu F., Sun R., Novel basic ionic liquid based on alkylammonium as efficient catalyst for Knoevenagel reaction, Synth. Commun., 2012, 42, 1384-1391. Google Scholar

  • [29] Muller T., Djanashvili K., Arends I.W.C.E., Peters J.A., Hanefeld U., Aldol reactions mediated by a tetrahedral boronate, Chem. Commun., 2013, 49, 361-363. Google Scholar

  • [30] Mika L.T., Csefalvay E., Horvath I.T., The role of water in catalytic biomass-based technologies to produce chemicals and fuels, Catal. Today, 2015, 247, 33-46. Google Scholar

  • [31] Liu H., Xu W., Liu X., Guo Y., Guo Y., Lu G., Wang Y., Aldol condensation of furfural and acetone on layered double hydroxides, Kinet. Catal., 2010, 51, 75-80. Google Scholar

  • [32] Hora L., Kikhtyanin O., Čapek L., Bortnovskiy O., Kubička D., Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone, Catal. Today, 2015, 241, 221-230. Google Scholar

  • [33] Sels B.F., De Vos D.E., Jacobs P.A., Hydrotalcite-like anionic clays in catalytic organic reactions, Catal. Rev., 2001, 43, 443-488. CrossrefGoogle Scholar

  • [34] Li C., Wei M., Evans D.G., Duan X., Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media, Catal. Today, 2015, 247, 163-169. Google Scholar

  • [35] Ahmed I.M., Gasser M.S., Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO3 layered double hydroxide (LDH), Appl. Surf. Sci., 2012, 259, 650-656. Google Scholar

  • [36] Ay A.N., Zumreoglu-Karan B., Temel A., Boron removal by hydrotalcite-like, carbonate-free Mg-Al-NO3-LDH and a rationale on the mechanism, Microporous Mesoporous Mater., 2007, 98, 1-5. Google Scholar

  • [37] Huang L., Zhou J., Hsu A.T., Chen R., Catalytic partial oxidation of n-butanol for hydrogen production over LDH-derived Ni-based catalysts, Int. J. Hydrogen Energy, 2013, 38, 14550-14558. Google Scholar

  • [38] Klemkaitė-Ramanauskė K., Žilinskas A., Taraškevičius R., Khinsky A., Kareiva A., Preparation of Mg/Al layered double hydroxide (LDH) with structurally embedded molybdate ions and application as a catalyst for the synthesis of 2-adamantylidene(phenyl)amine Schiff base, Polyhedron, 2014, 68, 340-345. Google Scholar

  • [39] Tanasoi S., Mitran G., Tanchoux N., Cacciaguerra T., Fajula F., Săndulescu I., Tichit D., Marcu I.-C., Transition metalcontaining mixed oxides catalysts derived from LDH precursors for short-chain hydrocarbons oxidation, Appl. Catal. A: Gen., 2011, 395, 78-86. Google Scholar

  • [40] Urdă A., Popescu I., Cacciaguerra T., Tanchoux N., Tichit D., Marcu I.-C., Total oxidation of methane over rare earth cationcontaining mixed oxides derived from LDH precursors, Appl. Catal. A: Gen., 2013, 464-465, 20-27. Google Scholar

  • [41] Evans D.G., Slade R.C.T., Structural aspects of layered double hydroxides, In: Duan X., Evans R.C.T. (Eds.), Layered double hydroxides, Springer, Berlin, 2006. Google Scholar

  • [42] Cavani F., Trifiro F., Vaccari A., Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 1991, 11, 173-301. CrossrefGoogle Scholar

  • [43] Huang L., Wang J., Gao Y., Qiao Y., Zheng Q., Guo Z., Zhao Y., O’Hare D., Wang Q., Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range, J. Mater Chem. A, 2014, 2, 18454-18462. CrossrefGoogle Scholar

  • [44] Zhang X.Q., Qi F.L., Li S.P., Wei S.H., Zhou J.H., A mechanochemical approach to get stunningly uniform particles of magnesium-aluminum-layered double hydroxides, Appl. Surf. Sci., 2012, 259, 245-251. Google Scholar

  • [45] Ordonez S., Diaz E., Leon M., Faba L., Hydrotalcite-derived mixed oxides as catalysts for different C-C bond formation reactions from bioorganic materials, Catal. Today, 2011, 167, 71-76. Google Scholar

  • [46] Faba L., Diaz E., Ordonez S., Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides, Appl. Catal. B: Environ., 2012, 113-114, 201-211.Google Scholar

  • [47] Hora L., Kelbichova V., Kikhtyanin O., Bortnovskiy O., Kubička D., Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides, Catal. Today, 2014, 223, 138-147. Google Scholar

  • [48] Kikhtyanin O., Hora L., Kubička D., Unprecedented selectivities in aldol condensation over Mg-Al hydrotalcite in a fixed bed reactor setup, Catal. Commun., 2015, 58, 89-92. Google Scholar

  • [49] Belskaya O.B., Leont’eva N.N., Gulyaeva T.I., Cherepanova S.V., Talzi V.P., Drozdov V.A., Likholobov V.A., Influence of a doubly charged cation nature on the formation and properties of mixed oxides MAlOx (M = Mg2+, Zn2+, Ni2+) obtained from the layered hydroxide precursors, Russ. Chem. Bull., 2013, 62, 2349-2361.[50] Belskaya O.B., Stepanova L.N., Leontyeva N.N., Kazakov M.O., Gulyaeva T.I., Cherepanova S.V., Lavrenov A.V., Likholobov V.A., Formation of platinum centers in basic carriers of layered double hydroxide type, Chem. Sustainable Dev., 2013, 21, 29-38. Google Scholar

  • [51] Kowalik P., Konkol M., Kondracka M., Prochniak W., Bicki R., Wiercioch P., Memory effect of the CuZnAl-LDH derived catalysts precursor - In situ XRD studies, Appl. Cat. A: Gen., 2013, 464-465, 339-347. Google Scholar

  • [52] Fan G., Li F., Evans D. G., Duan X., Catalytic applications of layered double hydroxides: recent advances and perspectives, Chem. Soc. Rev., 2014, 43, 7040-7066. CrossrefGoogle Scholar

  • [53] Di Cosimo J.I., Diez V.K., Xu M., Iglesia E., Apesteguia C.R., Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal., 1998, 178, 499-510. Google Scholar

  • [54] Salvador R., Casal B., Yate M., Martin-Luengo M.A., Ruiz-Hitzky E., Microwave decomposition of a chlorinated pesticide (Lindane) supported on modified sepiolites, Appl. Clay Sci., 2002, 22, 103-113. CrossrefGoogle Scholar

  • [55] Barrett C.J., Chheda J.N., Huber G.W., Dumesic J.A., Singlereactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water, Appl. Catal. B: Environ., 2006, 66, 111-118. Google Scholar

  • [56] Huang X., Zhang Q., Wang T., Liu Q., Ma L., Zhang Q., Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY, J. Fuel Chem. Technol, 2012, 40, 973-978. CrossrefGoogle Scholar

  • [57] Sadaba I., Ojeda M., Mariscal R., Fierro J.L.G., Lopez Granados M., Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone, Appl. Catal. B: Environ., 2011, 101, 638-648. Google Scholar

  • [58] Sadaba I., Ojeda M., Mariscal R., Richards R., Lopez Granados M., Mg-Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature, Catal. Today, 2011, 167, 77-83.Google Scholar

About the article

Received: 2017-01-30

Accepted: 2017-03-13

Published Online: 2017-10-28

Published in Print: 2017-10-26

Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 8–16, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0003.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in