Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Catalytic steam reforming of ethanol over W-, V-, or Nb–modified Ni-Al-O hydrotalcite-type precursors

E.V. Korneeva
  • Boreskov Institute of Catalysis, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T.Yu. Kardash
  • Boreskov Institute of Catalysis, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V.A. Rogov
  • Boreskov Institute of Catalysis, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E.A. Smal
  • Corresponding author
  • Boreskov Institute of Catalysis, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V.A. Sadykov
  • Boreskov Institute of Catalysis, pr. Akademika Lavrentieva, 5, 630090, Novosibirsk, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-28 | DOI: https://doi.org/10.1515/cse-2017-0004

Abstract

2:1 Ni/Al layered double hydroxides (LDH) doped by anions using ammonium salts (NH4)10[W12O41], NH4VO3 or (NH4)3[NbO(C2O4)3] have been prepared by co-precipitation, dried and calcined at 600оС, forming NiO-based solid solutions. Diffraction patterns are typical for the layered Ni-Al-O hydrotalcite-like structure. Anion incorporation into the interlayer space increases the interlayer distance for W- and Nb-containing anions but decreases it for VO3 -1. Broad halos in the diffraction patterns indicate amorphous or strongly disordered phases containing the doping anions. H2 reduction of undoped Ni-Al-O (NA) and those doped by W (NAW) and Nb (NANb) occurred in one step, while that doped by V (NAV) was reduced in two steps. W doping increases the reduction temperature, but Nb doping decreases it. The hydrogen consumed increases in the row: NANb < NAW < NAV < NA. In the ethanol steam reforming reaction, modification by W and Nb anions results in ethanol conversion rates close to that of the unmodified sample, but V increases it nearly twofold.

Keywords: layered double hydroxides; interlayer anion; ethanol steam reforming

References

  • [1] Zhang X., Wang T., Ma L., Zhang Q., Jiang T., Hydrotreatment of Bio-Oil over Ni-Based Catalyst, Bioresour. Technol., 2013, 127, 306−311.CrossrefWeb of ScienceGoogle Scholar

  • [2] Grilc M., Likozar B., Levec J., Hydrodeoxygenation and Hydrocracking of Solvolysed Lignocellulosic Biomass by Oxide, Reduced and Sulphide form of NiMo, Ni, Mo, and Pd Catalysts, Appl. Catal. B, 2014, 150−151, 275−287.Web of ScienceGoogle Scholar

  • [3] Zhao H. Y., Li D., Bui P., Oyama S.T., Hydrodeoxygenation of Guaiacol as Model Compound for Pyrolysis Oil on Transition Metal Phosphide Hydroprocessing Catalysts, Appl. Catal. A, 2011, 391, 305−310.Web of ScienceGoogle Scholar

  • [4] Cross A., Kumar A., Wolf E.E., Mukasyan A.S., Combustion Synthesis of a Nickel Supported Catalyst: Effect of Metal Distribution on the Activity During Ethanol Decomposition, Ind. Eng. Chem. Res., 2012, 51, 12004−12008. Google Scholar

  • [5] Wang W., Wang Y., Steam Reforming of Ethanol to Hydrogen over Nickel Metal Catalysts, Int. J. Energy Res., 2010, 34, 1285−1290. Web of ScienceGoogle Scholar

  • [6] Rossetti I., Biffi C., Bianchi C.L., Nichele V., Signoretto M., Menegazzo F., Finocchio E., Ramis G., Michele A. D., Ni/SiO2 and Ni/ZrO2 Catalysts for the Steam Reforming of Ethanol, Appl. Catal. B, 2012, 117−118, 384−396. Google Scholar

  • [7] Sanchez-Sanchez M.C., Navarro R.M., Kondarides D.I., Verykios X.E., Fierro J.L.G., Mechanistic Aspects of the Ethanol Steam Reforming Reaction for Hydrogen Production on Pt, Ni, and PtNi Catalysts Supported on γ-Al2O3, J. Phys. Chem. A, 2010, 114, 3873−3882.Web of ScienceGoogle Scholar

  • [8] Xu W., Liu Z., Johnston-Peck A.C., Senanayake S.D., Zhou G., Stacchiola D., Stach E.A., Rodriguez J.A., Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support, ACS Catal., 2013, 3, 975−984. Web of ScienceGoogle Scholar

  • [9] De Lima S.M., da Silva A.M., da Costa L.O.O., Assaf J.M., Mattos L.V., Sarkari R., Venugopal A., Noronha F.B., Hydrogen Production Through Oxidative Steam Reforming of Ethanol over Ni-Based Catalysts Derived from La1−xCexNiO3 Perovskite-Type Oxides, Appl. Catal. B, 2012, 121−122, 1−9. Google Scholar

  • [10] Mattos L.V., Jacobs G., Davis B.H., Noronha F.B., Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation, Chem. Rev., 2012, 112, 4094−4123. Google Scholar

  • [11] Ni M., Leung D.Y.C., Leung M.K.H., A review on reforming bio-ethanol for hydrogen production, Int. J. Hydrogen Energy, 2007, 32, 3238-3247.Google Scholar

  • [12] Haryanto A., Fernando S., Murali N., Adhikari S., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review, Energy Fuels, 2005, 19, 2098-2106. CrossrefGoogle Scholar

  • [13] Karim A.M., Su Y., Engelhard M.H., King D.L., Wang Y., Catalytic Roles of Co0 and Co2+ during Steam Reforming of Ethanol on Co/MgO Catalysts, ACS Catal., 2011, 1, 279-286. Web of ScienceGoogle Scholar

  • [14] Zhang J., Zhong Z., Cao X.M., Hu P., Sullivan M.B., Chen L., Ethanol Steam Reforming on Rh Catalysts: Theoretical and Experimental Understanding, ACS Catal., 2014, 4, 448-456. Web of ScienceGoogle Scholar

  • [15] Soykal I.I., Sohn H., Singh D., Miller J., Ozkan U.S., Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: Effect of the Particle Size, ACS Catal., 2014, 4, 585-592. Web of ScienceGoogle Scholar

  • [16] Scheffer B., Molhoek P., Moulijn J.A., Temperature-Programmed Reduction of NiO-WO3/A12O3 Hydrodesulphurization Catalysts, Appl. Catal., 1989, 46, 11-30. CrossrefGoogle Scholar

  • [17] Solsona B., Lopez Nieto J.M., Concepcion P., Dejoz A., Ivars F., Vazquez M.I., Oxidative dehydrogenation of ethane over Ni-W-O mixed metal oxide catalysts, J. Catal., 2011, 280, 28-39. Web of ScienceGoogle Scholar

  • [18] Li Ch., Chen Y.-W., Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method, Thermochim. Acta, 1995, 256, 457-465. Google Scholar

  • [19] Heracleous E., Lemonidou A.A., Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene - Effect of promoting metal Me, J. Catal., 2010, 270, 67-75. Web of ScienceGoogle Scholar

  • [20] Mohaideen K.K., Kim W., Koo K.Y., Yoon W.L., Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation, Catal. Commun., 2015, 60, 8-13. Web of ScienceGoogle Scholar

  • [21] Manukyan K.V., Cross A. J., Yeghishyan A.V., Rouvimov S., Miller J.J., Mukasyan A.S., Wolf E.E., Highly stable Ni-Al2O3 catalyst prepared from a Ni-Al layered double hydroxide for ethanol decomposition toward hydrogen, Appl. Catal. A, 2015, 508, 37-44. Web of ScienceGoogle Scholar

  • [22] Therdthianwong A., Sakulkoakiet T., Therdthianwong S., Hydrogen production by catalytic ethanol steam reforming, Science Asia, 2001, 27, 193-198. Google Scholar

  • [23] Comas J., Marino F., Laborde M., Amadeo N., Bio-ethanol steam reforming on Ni/Al2O3, Chem. Eng. J., 2004, 98, 61-68.CrossrefGoogle Scholar

  • [24] Powder Diffraction File, PDF-2: International Centre for Diffraction Data, USA, 2009. Google Scholar

  • [25] Inorganic Crystal Structure Database, ICSD, Release 2008: Fashin formations zentrum Karlsruhe D #8211, 1754 Eggenstein #8211, Leopoldshafen, Germany, 2008. Google Scholar

  • [26] Kraus W., Nolze G., Powder cell - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr., 1996, 29, 301-303. CrossrefGoogle Scholar

  • [27] Topas (version 4.2), software package, Bruker AXS GmbH 2000. Google Scholar

  • [28] Lowell S., Shields J.E., Thomas M.A., Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, Netherlands, 2006. Google Scholar

  • [29] Leont’eva N.N., Cherepanova S.V., Drozdov V.A., Thermal decomposition of layered double hydroxides Mg-Al, Ni-Al, Mg-Ga: structural features of hydroxide, dehydrated and oxide phase, J. Struct. Chem., 2014, 55, 1326-1341.Google Scholar

  • [30] Goh K.-H., Lim T.-Th., Dong Z., Application of layered double hydroxides for removal of oxyanions: A review, Water Research, 2008, 42, 1343-1368. Google Scholar

  • [31] Courcot B., Bridgeman A.J., Structural and Vibrational Study of [Mo7O24]6- and [W7O24]6-, J. Phys. Chem. A, 2009, 113, 10540-10548. Google Scholar

  • [32] Rives V., Layered double hydroxides: present and future, New York: Nova Publishers, 2001.Google Scholar

  • [33] Xu Z.P., Zeng H.C., Abrupt Structural Transformation in Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions, J. Phys. Chem. B., 2001, 105, 1743-1749. Google Scholar

  • [34] Kovanda F., Rojka T., Bezdiˇcka P., Jirґatova K., Obalova L., Pacultova K., Bastl Z., Grygar T., Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides, J. Sol. State Chem., 2009, 182, 27-36. Google Scholar

  • [35] Li F., Jiang X.R., Evans D.G., Duan X., Structure and basicity of mesoporous materials from Mg/Al/In layered double hydroxides prepared by separate nucleation and aging steps method, J. Porous Mat., 2008, 12, 55-63. Google Scholar

  • [36] Rudolf C., Dragoi B., Ungureanu A., Chirieac A., Royer S., Nastro A., Dumitriu E., NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts, Catal. Sci. Technol., 2014, 4, 4179-189. Google Scholar

  • [37] Mitran G., Cacciaguerra T., Loridant S., Tichit D., Marcu I.-C., Oxidative dehydrogenation of propane over cobalt-containing mixed oxides obtained from LDH precursors, Appl. Catal. A, 2012, 417 -418, 153 - 162. Web of ScienceGoogle Scholar

  • [38] Vermaire D.C., Van Berge P.C., The Preparation of WO3/ TiO2 and WO3/A12O3 and Characterization by Temperature- Programmed Reduction, J. Catal., 1989, 116, 309-317. Google Scholar

  • [39] Lee D.K., Lee H.T., Lee I.C., Park S.K., Bae S.Y., Kim C.H., Woo S.I., W-Incorporated CoMo/γ -Al2O3 Hydrodesulfurization Catalyst II. Characterization, J. Catal., 1996, 159, 219-229. Google Scholar

  • [40] Salamanca M., Licea Y.E., Echavarrıa A., Faro Jr.A.C., Palacio L.A., Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane, Phys. Chem. Chem. Phys., 2009, 11, 9583-9591. CrossrefWeb of ScienceGoogle Scholar

  • [41] Brijaldo M.H., Rojas H.A., Martínez J.J., Passos F.B., Effect of support on acetic acid decomposition over palladium catalysts, J. Catal., 2015, 331, 63-75. Web of ScienceGoogle Scholar

  • [42] Bion N., Epron F., Duprez D., Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming, Catalysis, 2010, 22, 1-55. Web of ScienceGoogle Scholar

About the article

Received: 2017-04-05

Accepted: 2017-05-16

Published Online: 2017-10-28

Published in Print: 2017-10-26


Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 17–24, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in