Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Composition of Surface Adsorbed Layer of TiO<sub>2</sub> Stored in Ambient Air

V.S. Zakharenko
  • Boreskov Institute of Catalysis, pr. Ak. Lavrentieva 5, Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.N. Lyulyukin
  • Corresponding author
  • Boreskov Institute of Catalysis, pr. Ak. Lavrentieva 5, Novosibirsk 630090, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D.V. Kozlov
Published Online: 2017-11-09 | DOI: https://doi.org/10.1515/cse-2017-0005


The processes of dark, UV, and visible light promoted desorption of surface species were investigated for three different TiO2 samples: TiO2 prepared by dispersion of the titania single crystal, TiO2 prepared by combustion of a pyrotechnic mixture in air, and commercial TiO2 P25. The composition of the adsorbed layer was identified in the dark and under UV and visible light irradiation. The composition of desorption products showed the dependence of the adsorption layer state on the TiO2 nature. Methane photodesorption was detected only for the commercial TiO2 P25. Possible reasons for methane emission include the capturing of complete molecules during the TiO2 production process and photocatalytic hydrogenation of CO2 under UV-light.

Keywords: TiO2; CO2; methane; photodesorption; adsorbed layer


  • [1] Zakharenko V.S., Parmon V.N., Zamaraev K.I., Photoadsorption and photocatalytic processes influencing the composition of the earth’s atmosphere. I. Irreversible photoadsorption of Freon-134a on magnesia under conditions simulating atmosphere, Kinet. Catal., 1997, 38(1), 124-128.Google Scholar

  • [2] Zakharenko V.S., Parmon V.N., Composition of the adsorbed layer on the surface of magnesia in the presence of atmospheric air, Russ. J. Phys. Chem. A, 1999, 73(1), 117-120. Google Scholar

  • [3] Zakharenko V.S., Daibova E.B., Photochemical activity of precipitating aerosol of Ca(OH)2 microparticles under tropospheric conditions, Opt. Atmos. Okean., 2016, 29(6), 521-524 (in Russian). Google Scholar

  • [4] Volodin A.M., EPR in situ investigation of mechanisms of photoinduced centers formation on MgO in presence of N2O and O2, Chem. Phys., 1992, 11(8), 1054-1063 (in Russian). Google Scholar

  • [5] Kozlov D.V., Panchenko A.A., Bavykin D.V., Savinov E.N., Smirniotis P.G., Influence of humidity and acidity of the titanium dioxide surface on the kinetics of photocatalytic oxidation of volatile organic compounds, Russ. Chem. Bull., 2003, 52(5), 1100-1105. CrossrefGoogle Scholar

  • [6] Zakharenko V.S., Photoadsorption and photocatalytic oxidation on the metal oxides components of tropospheric solid aerosols under the Earth’s atmosphere conditions, Catal. Today, 1997, 39(3), 243-249. CrossrefGoogle Scholar

  • [7] D.S. Selishchev, N.S. Kolobov, A.A. Pershin, D.V. Kozlov, TiO2 mediated photocatalytic oxidation of volatile organic compounds: Formation of CO as a harmful by-product, Appl. Catal. B Environ., 2017, 200, 503-513. Google Scholar

  • [8] D.S. Muggli, J.L. Falconer, Role of lattice oxygen in photocatalytic oxidation on TiO2, J. Catal., 2000, 191, 318-325. Google Scholar

  • [9] Jackson P., Parfitt G.D., Infra-red study of the surface properties of rutile. Deuterium exchange, carbon dioxide and but-1-ene adsorption, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 896-906. Google Scholar

  • [10] Zakharenko V.S., Daibova E.B., Effect of exposure to light on the chemical properties of the surface titania particles obtained by dispersing a rutile crystal in air, High Energy Chem., 2014, 48(2), 93-96. Google Scholar

  • [11] Pipornpong W., Wanbayor R., Ruangpornvisuti V., Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO, Appl. Surf. Sci., 2011, 257(24), 10322-10328. Google Scholar

  • [12] Kozlov, D.V., Paukshtis, E.A., Savinov, E.N., The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method, Appl. Catal. B Environ., 2000, 24(1), L7-L12. Google Scholar

  • [13] Raupp G.B., Dumesic J.A., Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states, J. Phys. Chem., 1985, 89(24), 5240-5246. Google Scholar

  • [14] Lo, C.-C., Hung, C.-H., Yuan, C.-S., Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor, Sol. Energy Mater. Sol. Cells, 2007, 91(19), 1765-1774. CrossrefGoogle Scholar

  • [15] Zakharenko V.S., Parmon V.N., Spectral dependences of simultaneous photogenerated evolution of H2 and CO2 from a Pt/TiO2 suspension in a 1N H2SO4 solution, Kinet. Catal., 1996, 37(3), 402-405.Google Scholar

About the article

Received: 2017-07-03

Accepted: 2017-10-13

Published Online: 2017-11-09

Published in Print: 2017-11-27

Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 25–30, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0005.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in