Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Alteration of Adsorption Selectivity of LSX Zeolite in Li+ and H+ forms towards CO2 and N2O

A.A. Leonova
  • Corresponding author
  • Boreskov Institute of Catalysis, Novosibirsk, 630090, Akad. Lavrentieva 5, Novosibirsk, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.S. Mel’gunov
  • Boreskov Institute of Catalysis, Novosibirsk, 630090, Akad. Lavrentieva 5, Russian Federation
  • Novosibirsk State University, Novosibirsk, 630090, Pirogova 2, Novosibirsk, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-24 | DOI: https://doi.org/10.1515/cse-2017-0006

Abstract

The adsorption and textural properties of LSX zeolite after cation exchange both in LiCl and NH4Cl aqueous solutions have been evaluated from elemental analysis, XRD, N2 adsorption at 77K, and CO2 and N2O adsorption at 273K. Incorporation of Li+ and H+ results in a significant decrease of adsorption selectivity towards CO2 in a pressure range 0.01 - 1 Torr compared to the initial LSX in the K-Na form. This feature allows simultaneous quantitative sequestration of CO2 and N2O traces from contaminated gas flows, or can be useful for pre-concentration of these gases prior to catalytic utilization. Above 1 Torr adsorption selectivity rises to 1.0 for the unmodified LSX, but incorporation of Li+ and H+ increases it in the range 5 - 50 Torr, allowing adsorption purification of N2O from CO2 diluted an in inert gas flow under the applied conditions.

Keywords: LSX zeolite; ion-exchange; Li-LSX; H-LSX; separation CO2; N2O; adsorption; selectivity

References

  • [1] Kuehl, G., Crystallization of low-solica faujasite (SiO2/Al2O3~2.0), Zeolites, 1987, 5, 451-457. Google Scholar

  • [2] Tontisirin, S, Synthesis and characterization of co-crystalline zeolite composite of LSX/A, Micropor. Mesopor. Mater., 2017, 239, 123-129.Google Scholar

  • [3] Rege, S.U., Yang, R.T., Limits for Air Separation by Adsorption with LiX Zeolite, Ind. Eng. Chem. Res., 1997, 36, 5358-5365.Google Scholar

  • [4] Hutson N.D., Rege, S.U., Yang, R.T., Mixed cation zeolites: LixAgy-X as a superior adsorbent for air separation, AIChE J., 1999, 45, 724-734. Google Scholar

  • [5] Lowenstein, W., The distribution of aluminum the tetrahedra of silicates and aluminates, Amer. Mineral., 1954, 39, 92-96.Google Scholar

  • [6] Panezai, H., Fan, M., Sun, J., Bai, S., Wu, X., Influence of Ca2+ or Na+ extraframework cations on the thermal dehydration and related kinetic performance of LSX zeolite, J. Phys. Chem. Solids, 2016, 99, 1-10.Web of ScienceGoogle Scholar

  • [7] Zanota, M.-L., Heymans, N., Gilles, F., Su, B.-L., De Weireld, G., Thermodynamic study of LiKNaLSX zeolites with different Li exchange rate for N2/O2 separation process, Micropor. Mesopor. Mater., 2011, 143, 302-310.Google Scholar

  • [8] Montzka, S.A., Dlugokencky, E.J., Butler, J.H., Non-CO2 greenhouse gases and climate changes, Nature, 2011, 476, 43-50. Google Scholar

  • [9] Epiepang, F.E., Li, J., Liu, Y., Yang, R.T., Low-pressure performance evaluation of CO2, H2O and CH4 on Li-LSX as a superior adsorbent for air prepurification, Chem. Eng. Sci., 2016, 147, 100-108. Web of ScienceGoogle Scholar

  • [10] Idem, R., Wilson, M., Tontiwachwuthikul, P., Chakma, A., Veawab, A., Aroonwilas, A., Gelowitz, D., Pilot Plants Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant, Ind. Eng. Chem. Res., 2006, 45, 2414-2420.Google Scholar

  • [11] Eguchi, R., Uchida, S., Mizuno, N., Highly Selective Sorption and Separation of CO2 from a Gas Mixture of CO2 and CH4 at Room Temperature by a Zeolitic Organic-Inorganic Ionic Crystal and Investigation of the Interaction with CO2, J. Phys. Chem. C, 2012, 116, 16105-16110.Web of ScienceGoogle Scholar

  • [12] Akolekar, D., Chaffee, A., Howe, R.F., The transformation of kaolin to low-silica X zeolite, Zeolites, 1997, 19, 359-365. CrossrefGoogle Scholar

  • [13] Standard Test Method for Determination of Relative X-Ray Diffraction Intensities of Faujasite-Type Zeolite-Containing Materials Designation D 3906-03. Google Scholar

  • [14] Mel’gunov, M.S., Ayupov, A.B., Direct method for evaluation of BET adsorbed monolayer capacity, Micropor. Mesopor. Mater, 2017, 243, 147-153. Google Scholar

  • [15] Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem., 2015, 87, 1051-1069. Google Scholar

  • [16] Barthomeuf, D, Conjugate acid-base pairs in zeolites, J. Phys. Chem., 1984, 88, 42-45. CrossrefGoogle Scholar

  • [17] Walton, K.S., Abney, M.B., LeVan, M.D., CO2 adsorption in Y and X zeolites modified by alkali metal ion exchange, Micropor. Mesopor. Mater., 2006, 91, 78-84. Google Scholar

About the article

Received: 2017-07-03

Accepted: 2017-10-13

Published Online: 2017-11-24

Published in Print: 2017-11-27


Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 31–35, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in