Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Temperature effect on the physicochemical properties of χ-alumina interaction with CCl4

S.A. Yashnik
  • Corresponding author
  • Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Pr. Akad. Lavrentieva 5, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.V. Salnikov
  • Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Pr. Akad. Lavrentieva 5, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N.V. Shikina
  • Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Pr. Akad. Lavrentieva 5, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.V. Ischenko
  • Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Pr. Akad. Lavrentieva 5, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I.P. Prosvirin
  • Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Pr. Akad. Lavrentieva 5, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G.S. Litvak
  • Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Pr. Akad. Lavrentieva 5, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-30 | DOI: https://doi.org/10.1515/cse-2017-0007

Abstract

The main characteristics in the formation of morphological, textural and acidic properties of the catalysts obtained by thermal treatment of χ-Al2O3 in a flow of carbon tetrachloride over the temperature range of 200 - 500°C were revealed. It was found that the sorption capacity of χ-χ-Al2O3 with respect to chloride ion depends nonlinearly on the temperature of interaction with CCl4. The sorption capacity increases when the temperature is raised from 200 to 400°C, and then decreases with the temperature elevation to 500°C due to an increase in the formation rate of aluminum chloride and high volatility of bulk AlCl3. The analysis of some models describing the sorption kinetics of chloride ions on χ-Al2O3 revealed that experimental data obtained at 200 and 300°C are well approximated within the pseudo-second order model. The calculated parameters of thermodynamic models (Langmuir, Freundlich, Temkin and Dubinin- Radushkevich) showed that the chlorination of χ-Al2O3 with carbon tetrachloride proceeds by the chemisorption mechanism. The observed characteristics in the formation of main physicochemical properties are caused by the chemistry of reactions proceeding on the surface and in the bulk of χ-Al2O3 particles upon interaction with carbon tetrachloride.

Keywords: chlorinated alumina; acidic properties; TPD of ammonia; particles morphology; catalyst for isomerization of C4-C6 hydrocarbons

References

  • [1] E.H. Burk, H. Crest, J. Mooi, 1962, Method for manufacturing an active catalyst composition, US Patent 3047514.Google Scholar

  • [2] Basset J., Figueras F., Mathieu M.V., Prettre M., Properties of chlorinated aluminas: V. Cis-2-butene isomerization over alumina and chlorinated aluminas, J. Catal., 1970, 16, 53-61.Google Scholar

  • [3] D. Germanas, E.L. Pollitzer, 1975, Hydrocarbon isomerization catalyst, US Patent 3892683.Google Scholar

  • [4] Comet D., Goupil J.-M., Szabo G., Poirier J.-L., Clet G., Alkylation of isobutane by ethylene catalyzed by chlorided alumina: influence of experimental conditions, Appl. Catal. A, 1996, 141, 193-205.Google Scholar

  • [5] Arena F., Frusteri F., Mondello N., Giordano N., Interaction pathway of chloride ions with γ-Al2O3: surface acidity and thermal stability of the Cl/γ-Al2O3 system, J. Chem. Soc. Faraday Trans., 1992, 88, 3353-3356.Google Scholar

  • [6] Goble A.G., Lawrance P.A., in: Proceedings of the Third International Congress on Catalysis, (Amsterdam, North- Holland) 1964, 320.Google Scholar

  • [7] Clet G., Goupil J.M., Szabo G., Cornet D., Chlorinated alumina as an alkylation catalyst: influence of superficial HCl, Mol. Catal. A: Chem., 1999, 148, 253-264.Google Scholar

  • [8] Melchor A., Garbowski E., Mathieu M.-V., Primet M. Chlorinated Alumina. Acidic Properties and Catalytic Activity towards n-Butane Isomerization, J. Chem. Soc. Faraday Trans. I., 1986, 82, 1893-1901.Google Scholar

  • [9] Cai T., Liu S., Qu J., Wong S., Song Z., He M. , Chlorinated alumina and its catalytic behavior in selective polymerization of isobutene, Appl. Catal. A: Gen., 1993, 97, 113-122Google Scholar

  • [10] Tanaka M., Ogasawara S. Infrared studies of the adsorption and the catalysis of hydrogen chloride on alumina and on silica, J. Catal., 1970, 16, 157-163.Google Scholar

  • [11] Tanaka M., Ogasawara S. n-Butene isomerization on HCl-treated alumina, J. Catal., 1970, 16, 164-172.CrossrefGoogle Scholar

  • [12] Kytokivi A., Lindblad M., Root A., IR and 1H NMR studies on the adsorption of gaseous hydrogen chloride on γ-alumina., J. Chem. Soc. Faraday Trans., 1995, 91, 941-948. Google Scholar

  • [13] Ayame A., Sawada G., Sato H., Zhang G., Ohta T., Izumizawa T., Characterization of chlorine-treated alumina surfaces, Appl. Catal., 1989, 48, 25-35.CrossrefGoogle Scholar

  • [14] Ayame A., Sawada G., Isomerization of 1-Butene on High-Temperature-Chlorinated Alumina, Bull. Chem. Soc. Jpn., 1989, 62, 3055-3060.Google Scholar

  • [15] Comet D., Goupil J.-M., Szabo G., Poirier J.-L., Clet G., Alkylation of isobutane by ethylene catalyzed by chlorided alumina: influence of experimental conditions, Appl. Catal. A: Gen., 1996, 141, 193-205.Google Scholar

  • [16] Ducourty B., Szabo G., Dath J.P., Gilson J.P., Goupil J.M., Cornet D., Pt/Al2O3-Cl catalysts derived from ethylaluminumdichloride: Activity and stability in hydroisomerization of C6 alkanes, Appl. Catal. A: Gen., 2004, 269, 203-214.Google Scholar

  • [17] Bailey R.R., Wightman J.P., Interaction of gaseous hydrogen chloride and water with oxide surfaces: I. Alumina, J. Colloid Interface Sci., 1979, 70, 112-122.Google Scholar

  • [18] Garbowski E., Primet M., Adsorption of Benzene on Acidified Alumina, J. Chem. Sot. Faraday Trans. I., 1987, 83, 1469-1476CrossrefGoogle Scholar

  • [19] Marczewski M., Derewinski M., Malinowski S., The influence of gaseous chlorine on the chemical and catalytic properties of alumina, Can. J. Chem. Eng., 1983, 61, 93-97.Google Scholar

  • [20] Perry R.H., Green D.W., Malonay J.O. (Eds.), Perry’s Chemical Engineering Handbook, 7th Edition, McGraw-Hill, New York, 1984, Table 2-7.Google Scholar

  • [21] Tsuchida T., Ishii T., Furuichi R., Haga H., Thermoanalytical study on the chlorination of hydrated aluminas and transition aluminas, Thermochimica Acta., 1979, 34, 19-28CrossrefGoogle Scholar

  • [22] Bursian N.R., Isomerization Technology of Paraffin Hydrocarbons., Khimiya, 1985, 66-74 (in Russia).Google Scholar

  • [23] McInroy A.R., Lundie D.T., Winfield J.M., Dudman C.C., Jones P., Parker S.F., Lennon D., The interaction of alumina with HCl: An infrared spectroscopy, temperature-programmed desorption and inelastic neutron scattering study, Catal. Today, 2006, 114, 403-411.Google Scholar

  • [24] Busca G., Chapter Three - Structural, Surface, and Catalytic Properties of Aluminas, Adv. Catal., 2014, 57, 320-402.Google Scholar

  • [25] Kul’ko E.V., Ivanova A.S., Budneva A.A., Paukshtis E.A., Acid-base properties of single-phase aluminum oxides, Kinetics and Catalysis, 2005, 46, 132-137.Google Scholar

  • [26] Maslyansky G.N., Shapiro R.N., Catalytic Reforming of Gasolines: Chemistry and Technology, Khimiya, Leningrad, 1985.Google Scholar

  • [27] Raseev S. In: Thermal and Catalytic Processes in Petroleum Refining, Marcel Dekker, New York, 2003.Google Scholar

  • [28] Scofield J. H., Hartree-Slater subshell photoionization crosssections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129-137.Google Scholar

  • [29] Thomson J., Webb G., Witield J. M., Halogen-promoted γ-alumina I. The interactions of 36Cl- and 14Χ-labelled carbon tetrachloride and of 36Cl- and 2H-labelled hydrogen chloride with γ-alumina, J. Mol. Catal., 1991, 67, 117-126.Google Scholar

  • [30] Oshina L.A., Trieger Yu.A., Motsarev G.V., Sonin Yu.V., Sergeev E.V., Skibinskaya M.B., Golfand E.A. Industrial Chlororganic Products. A Handbook. In: Khimiya, Moscow, 1978.Google Scholar

  • [31] Remi H. Treatise on Inorganic Chemistry. In: Inostr. Lit., Novoselova V.V. (Eds.) Moscow, 1963. Google Scholar

  • [32] Gu M., Cheng Z., Carboxylation of Toluene with CO2 over Dimeric AlCl3 Immobilized on Alumina , Ind. Eng. Chem. Res., 2014, 53, 9992-9998.Google Scholar

  • [33] Blumenthal G., Weguer G., Preferential formation of aluminium chloride by chlorination of a highly reactive powder obtained from metakaolin or kaolin by hydrochloric acid treatment, Reactivity of Solids, 1989, 7, 105-113CrossrefGoogle Scholar

  • [34] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum., J. Am. Chem. Soc., 1918, 40, 1361-1403Google Scholar

  • [35] Freundlich H.M.F., Uber die adsorption in losungen, Z. Phys. Chem., 1906, 57, 385-470.Google Scholar

  • [36] Temkin M.I., Pyzhev V., Kinetics of ammonia synthesis on promoted iron catalyst, Acta Phys. Chim. USSR, 1940, 12, 327-356 (in USSR).Google Scholar

  • [37] Dubinin M.M., Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents, Z. Fiz. Khim., 1965, 39, 1305-1317.Google Scholar

  • [38] Foo K.Y., Hameed B.H., Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 2010,156, 2-10.Web of ScienceGoogle Scholar

  • [39] Pillai S. K., Hamoudi S., Belkacemi K., Metathesis of methyloleate over methyltrioxorhenium supported on ZnCl2-promoted mesoporous alumina, Appl. Catal. A: Gen., 2013, 455, 155-163.Web of ScienceGoogle Scholar

  • [40] Yuschenko V.V., Calculating the acidity spectra of catalysts from temperature-programmed desorption of ammonia, Russian Journal of Physical Chemistry A, 1997, 71, 628-632.Google Scholar

  • [41] Paukshtis E.A., Soltanov R.I., Yurchenko E.N., Iratova K., Acid-base properties of modified aluminas, Collection Czechoslovak Chem. Commun., 1982, 47, 2044-2060.Google Scholar

About the article

Received: 2017-09-30

Accepted: 2017-11-01

Published Online: 2017-11-30

Published in Print: 2017-11-27


Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 36–51, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in