Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Thermal decomposition of hydroxycarbonate Cu-Fe-Cr spinel precursors

Natalia Vladimirovna Shtertser / Ludmila Mihailovna Plyasova / Eugene Vladimirovich Dokuchits / Tatyana Petrovna Minyukova / Tamara Mihailovna Yurieva
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/cse-2017-0011

Abstract

Decomposition of mixed Cu-Fe-Cr hydroxycarbonates was investigated by thermal analysis and in situ XRD and FTIR. TGA and DTA showed that increased preheating temperature removes modifying anions and decreases the spinel crystallization temperature. A disordered oxide phase containing carbonate is initially formed. The carbonate contents and crystallization temperature decreases depend on the Fe3+/Cr3+ ratio. The residual anion content may affect interlayer and interblock distances in this amorphous phase, changing the spinel crystallization temperature. Understanding the modifying anion effects on the spinel crystallization makes it possible to select the thermal treatment.

Keywords : Cu-Fe-Cr hydroxycarbonate; modifying anions; CuFeCr spinel; crystallization temperature

References

  • [1] Santacesaria E., Carotenuto G., Tesser R., Serio M.Di., Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts, Chemical Engineering Journal, 2012, 179, 209-220.Web of ScienceGoogle Scholar

  • [2] Parsaee A., Eliassi A., Ranjbar M., Kashi E., Preparation of Cu-Zn-Ce-Al spinel catalyst for hydrogen production in microchannel reactor and considering the geometrical effects of micro-channels on velocity distribution, Journal of Applied Chemistry, 2018, 12 (45), 71-81.Google Scholar

  • [3] Simonov M.N., Simakova I.L., Parmon V.N., Hydrogenation of lactic acid to propylene glycol over copper-containing catalysts. Reaction Kinetics and Catalysis Letters, 2009, 97 (1), 157-162.Google Scholar

  • [4] Xu C., Sun W., Cao L., Li T., Cai X., Yang J., Highly efficient Pd-doped aluminate spinel catalysts with different divalent cations for the selective catalytic reduction of NO with H2 at low temperature, Chemical Engineering Journal, 2017, 308, 980-987.Web of ScienceGoogle Scholar

  • [5] Jabłońska M., Chmielarz L., Węgrzyn A., Gora-Marek K., Piwowarska Z., Witkowski S., Bidzińska E., Kuśtrowski P., Wach A., Majda D., Hydrotalcite derived (Cu, Mn)-Mg-Al metal oxide systems doped with palladium as catalysts for low-temperature methanol incineration, Applied Clay Science, 2015, 114, 273-282.Web of ScienceGoogle Scholar

  • [6] Ye M.Q., Han A.J., Chu Z.S., Che J.F., Wang C., Synthesis and Characterization of Mn-Doped Copper Chromite Black Pigments, Advanced Materials Research, 2013, 602-604, 71-75.Google Scholar

  • [7] Mane R.B., Hengne A.M., Ghalwadkar A.A., Vijayanand S., Mohite P.H., Potdar H.S., Rode C.V., Cu:Al Nano Catalyst for Selective Hydrogenolysis of Glycerol to 1,2-Propanediol, Catal. Lett. 2010, 135, 141-147.Google Scholar

  • [8] Tasca J.E., Quincoces C.E., Lavat A., Alvarez A.M., Gonzalez M.G., Preparation and characterization of CuFe2O4 bulk catalysts, Ceramics International, 2011, 37 (3), 803-812.Web of ScienceGoogle Scholar

  • [9] Tanaka Y., Takeguchi T., Kikuchi R,. Eguchi K., Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels, Applied Catalysis A: General, 2005, 279 (1-2), 59-66.Google Scholar

  • [10] Shimoda N., Faungnawakij K., Kikuchi R., Fukunaga T., Eguchi K., Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether, Applied Catalysis A: General, 2009, 365 (1), 71-78.Web of ScienceGoogle Scholar

  • [11] Tabakova T., Idakiev V., Avgouropoulos G., Papavasiliou J., Manzoli M., Boccuzzi F., Ioannides T., Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor, Applied Catalysis A: General, 2013, 451, 184-191.Web of ScienceGoogle Scholar

  • [12] Pantaleo G., Liotta L.F., Venezia A.M., Deganello G., Ezzo E.M., El Kherbawi M.A., Atia H., Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2, Materials Chemistry and Physics, 2009, 114, 604-611.Google Scholar

  • [13] Gines M.J.L., Apesteguia C.R., Thermal decomposition of Cu-based hydroxycarbonate catalytic precursors for the low-temperature co-shift reaction, J. Therm. Anal. Calorim., 1997, 50, 745-756.CrossrefGoogle Scholar

  • [14] Plyasova L.M., Zaikovskii V.I., Kustova G.N., Minyukova T.P., Molina I.Yu., Shtertser N.V., Yurieva T.M., Structural Features of Copper Ferrite-Chromites, Journal of Structural Chemistry, 2015, 56(4), 642-649. Google Scholar

  • [15] Minyukova T.P., Baronskaya N.A., Demeshkina M.P., Plyasova L.M., Yurieva T.M., Catalytic properties of copper chromite ferrites in water gas shift reaction and hydrogen oxidation, Kinetics and Catalysis, 2016, 57(2), 224-228.Google Scholar

  • [16] Amonette J.E., Rai D., Identifidation of noncrystalline (Fe,Cr) (OH)3 by infrared spectroscopy, Clays and Clay Minerals, 1990, 38,(2), 129-136.CrossrefGoogle Scholar

  • [17] Erenburg B.G., Fateeva V.P., Minkov A.I., Shadrina L.M., Stoyanov E.U., About the structural mechanism of spinel formation from the precipitates of double hydroxides and hydroxy salts, Izv. SB AS USSR, series chem., 1981, 2 (4), 54-59 (in Russian).Google Scholar

  • [18] Simentsova I.I., Shtertser N.V., Plyasova L.M., Minyukova T.P., Yurieva T.M., Activation of nickel-chromium hydrogenation catalysts with hydrogen. Kinetics and Catalysis, 2016, 57 (2), 251-254.Google Scholar

  • [19] Kowalik P., Konkol M., Kondracka M., Prochniak W., Bicki R., Wiercioch P., The CuZnZrAl hydroxycarbonates as copper catalyst precursors-Structure, thermal decomposition and reduction studies, Applied Catalysis A: General, 2013, 452, 139-146.Web of ScienceGoogle Scholar

  • [20] Ferreira O.P., Alves O.L., Gouveia D.X., Souza Filho A.G., de Paiva J.A.C., Mendes Filho J., Thermal decomposition and structural reconstruction effect on Mg-Fe-based hydrotalcite compounds, Journal of Solid State Chemistry, 2004, 177, 3058-3069.Google Scholar

  • [21] Labajos F.M., Rives V., Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials, Journal of materials science, 1992, 27, 1546-1552.Google Scholar

  • [22] Kannan S., Rives V., Knozinger H., High-temperature transformations of Cu-rich hydrotalcites, Journal of Solid State Chemistry, 2004, 177, 319-331.Google Scholar

  • [23] Melian-Cabrera I., Lopez Granados M., Fierro J.L.G., Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor: thermal methods combined with an in situ DRIFT study, Phys. Chem. Chem. Phys., 2002, 4, 3122-3127.CrossrefGoogle Scholar

  • [24] Tarasov A., Schumann J., Girgsdies F., Thomas N., Behrens M., Thermokinetic investigation of binary Cu/Zn hydroxycarbonates asprecursors for Cu/ZnO catalysts, Thermochimica Acta, 2014, 591, 1-9.Google Scholar

  • [25] Kanezaki E., Direct observation of a metastable solid phase of Mg/Al/CO3-layered double hydroxide by means of high temperature in situ powder XRD and DTA/TG, Inorg Chem., 1998, 37, 2588-2590.Google Scholar

About the article

Received: 2017-11-17

Accepted: 2017-12-06

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 67–72, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0011.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in