Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Synthesis, physicochemical and catalytic properties of Ni/PrCeZrO catalysts for water-gas shift reaction

Tatyana V. Larina
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yulia E. Fedorova
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamara A. Krieger
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arcady V. Ishchenko
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tatiana S. Glazneva
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ekaterina M. Sadovskaya
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikita F. Eremeev
  • Corresponding author
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladislav A. Sadykov
  • Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva, 5, Novosibirsk, 630090, Russian Federation
  • Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/cse-2017-0012

Abstract

Mixed nanocrystalline ceria-zirconia oxides doped with praseodymium containing 5, 7.5, 10, and 12.5 wt. % nickel were prepared by the incipient wetness impregnation of the oxide support. Complex physicochemical characterization by X-ray diffraction analysis, ultraviolet-visible diffuse reflectance spectroscopy, high resolution transmission electron microscopy and Fourier-transform infrared spectroscopy of adsorbed CO revealed that the nickelcontaining samples are comprised of a solid solution of praseodymium, cerium and zirconium oxides with the fluorite structure as well as nickel oxide particles with a size up to 100 nm. All prepared nanocomposite catalysts show a high catalytic activity in the water-gas shift reaction. The optimum content of nickel in the catalyst providing the maximum activity was found to be 10 wt. %. A high oxygen mobility in these catalysts estimated by the temperature-programmed oxygen isotope heteroexchange with C18O2 provides required coking stability. To eliminate local overheating of the catalyst and decrease the pressure drop in the reactor, as required for further up-scaling, the active component was supported on a metal plate made of Ni-Al foam alloy. At a fixed contact time, the same level of CO conversion with a fraction of the active component was achieved with an approximately 50 wt% loading on the support.

Keywords: water-gas shift reaction; Pr-doped ceriazirconia oxide; nickel

References

  • [1] Rostrup-Nielsen, J.R., Sehested, J., Norskov, J.K., Hydrogen and synthesis gas by steam- and CO2 reforming. Adv. Catal., 2002, 47, 65-139.Google Scholar

  • [2] Deutschmann O. Catalytic reforming of logistic fuels at high-temperatures. Catalysis, 2012, 24, 48-82.Google Scholar

  • [3] Nahar G., Dupont V., Twigg M.V., Dvininov E., Feasibility of hydrogen production from steam reforming of biodiesel (FAME) feedstock on Ni-supported catalysts. Appl. Catal. B: Environ., 2015, 168-169, 228-242.Web of ScienceGoogle Scholar

  • [4] T. Siqueira Moraes, R. Crisostomo Rabelo Neto, M. Celso Ribeiro, L. Veiga Mattos, M. Kourtelesis, S. Ladas, X. Verykios, F. Bellot Noronha, The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol. Catal. Today, 2015, 242, 35-49.Web of ScienceGoogle Scholar

  • [5] Newsome D S, The water gas shift reaction. Catal. Rev. Sci. Eng., 1980, 21, 275-318.CrossrefGoogle Scholar

  • [6] Hilaire S., Wang X., Luo T., Gorte R.J., Wagner J. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl. Catal. A: Gen., 2001, 215, 271-278.Google Scholar

  • [7] Li Y., Fu Q., Flytzani-Stephanopoulos M. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl. Catal. B: Environ., 2000, 27, 179-191.CrossrefGoogle Scholar

  • [8] Shinde V.M., Madras G., Water-gas shift reaction over multicomponent ceria catalysts. Appl. Catal. B: Environ., 2012, 123-124, 367-378.Google Scholar

  • [9] Pastor-Perez L., Ramirez Reina T., Ivanova S., Centeno M.A., Odriozola J.A., Sepulveda-Escribano A. Ni-CeO2/C Catalysts with Enhanced OSC for the WGS Reaction. Catalysts, 2015, 5, 298-309.Web of ScienceGoogle Scholar

  • [10] Haryanto A., Fernando S.D., Filip To S.D., Steele Ph.H., Pordesimo L., Adhikari S. Hydrogen Production through the Water-Gas Shift Reaction: Thermodynamic Equilibrium versus Experimental Results over Supported Ni Catalysts. Energy & Fuels, 2009, 23, 3097-3102.Web of ScienceGoogle Scholar

  • [11] Haryanto A., Filip To S.D., Steele Ph.H., Pordesimo L., Adhikari S. High Temperature Water Gas Shift Reaction over Nickel Catalysts for Hydrogen Production: Effect of Supports, GHSV, Metal Loading, and Dopant Materials. J. Thermodyn. Catal., 2011, 2, 106-110.Google Scholar

  • [12] Oluku I.J., Ibrahim H., Idem R. Kinetic Study of Hydrogen Production by the High Temperature Water Gas Shift Reaction of Reformate Gas in Conventional and Membrane Packed Bed Reactors over Ca-Promoted CeO2−ZrO2 Supported Ni−Cu Catalyst. Ind. Eng. Chem. Res., 2015, 54, 612-622.Web of ScienceGoogle Scholar

  • [13] Wang L., Zhang S., Liu Y. Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts. J. Rare Earths, 2008, 26, 66-70.Web of ScienceGoogle Scholar

  • [14] Bobrova L., Andreev D., Ivanov E., Mezentseva N., Simonov M., Makarshin L., Gribovskii A., Sadykov V., Water-Gas Shift Reaction over Ni/CeO2 Catalysts. Catalysts, 2017, 7, 310-333.Google Scholar

  • [15] Miranda B.C., Chimentao R.J., Santos J.B.O., Gispert-Guirado F., Llorca J., Medina F., Lopez Bonillo F., Sueiras J.E., Conversion of glycerol over 10%Ni/ γ-Al2O3 catalyst. App. Catal. B: Environ., 2014, 147, 464-480.Google Scholar

  • [16] Sadykov V., Mezentseva N., Alikina G., Bunina R., Rogov V., Krieger T., Belochapkine S., J. Ross, Composite catalytic materials for steam reforming of methane and oxygenates: Combinatorial synthesis, characterization and performance. Catal. Today, 2009, 145, 127-137.Web of ScienceGoogle Scholar

  • [17] Bobin A.S., Sadykov V.A., Rogov V.A., Mezentseva N.V., Alikina G.M., Sadovskaya E.M., Glazneva T.S., Sazonova N.N., Smirnova M.Yu, Veniaminov S.A., Mirodatos C., Galvita V., Marin G.B., Mechanism of CH4 Dry Reforming on Nanocrystalline Doped Ceria-Zirconia with Supported Pt, Ru, Ni, and Ni-Ru. Top. Catal., 2013, 56, 958-968.CrossrefWeb of ScienceGoogle Scholar

  • [18] Sadykov V.A., Kuznetsova T.G., Frolova Yu.V., Alikina G.M., Lukashevich A.I., Rogov V.A., Muzykantov V.S., Pinaeva L.G., Sadovskaya E.M., Ivanova Yu.A., Paukshtis E.A., Mezentseva N.V., Batuev L.Ch., Parmon V.N., Neophytides S., Kemnitz E., Scheurell K., Mirodatos C., van Veen A.C., Fuel-rich methane combustion: role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support. Catal. Today, 2006, 117, 475-483.Google Scholar

  • [19] Sadykov V., Sobyanin V., Mezentseva N., Alikina G., Vostrikov Z., Fedorova Y., Pelipenko V., Usoltsev V., Tikhov S., Salanov A., Bobrova L, Beloshapkin S., Ross J.R.H , Smorygo O., Ulyanitskii V., Rudnev V., Transformation of CH4 and liquid fuels into syngas on monolithic catalysts, Fuel, 2010, 89, 1230-1240Web of ScienceGoogle Scholar

  • [20] Sadykov V., Sadovskaya E., Bobin A., Kharlamova T., Uvarov N., Ulikhin A., Argirusis Ch., Sourkouni G., Stathopoulos V., Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: estimation of oxygen self-diffusion coefficients. Solid State Ionics, 2015, 271, 69-72.Web of ScienceGoogle Scholar

  • [21] Kol’ko V.P., Zyuzin D.A., Sadykov V.A., Kriventsov V.V., Moroz E.M. Structure of mixed Mex(Ce0.5Zr0.5)1-xOy (Me=Gd, Pr) oxides. Glass Physics and Chemistry, 2007, 33, 335-339.Google Scholar

  • [22] Yost D.M., Russell H.Jr., Garner C.S.The Rare-Earth Elements and Their Compounds, John Wiley & Sons, Inc., New York, 1947, 125.Google Scholar

  • [23] Spedding F.H., Daane A.H. The Rare Earths, John Wiley & Sons, Inc., New York and London, 1961, 639. Google Scholar

  • [24] Decerra A.M., Costro-Luna A.E. An investigation on the presence of NiAl2O4 in a stable Ni on alumina catalyst for dry reforming. J. Chil. Chem. Soc., 2005, 50, 465-469.Google Scholar

  • [25] Scheffer B., Heijeinga J.J., Moulijn J.A. An electron spectroscopy and X-ray diffraction study of NiO/Al2O3 and NiO-WO3/Al2O3 catalyst. J. Phys. Chem., 1987, 91, 4752-4759.CrossrefGoogle Scholar

  • [26] Zaki M.I., Hussein G.A.M., Mansour S.A.A., Ismail H.M., Mekhemer G.A.H. Ceria on silica and alumina catalysts: dispersion and surface acid-base properties as probed by X-ray diffractometry, UV-Vis diffuse reflectance and in situ IR absorption studies. Colloids and Surfaces Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 47-56.Google Scholar

  • [27] Wolfbeisser A., Sophiphun O., Bernardi J., Wittayakun J., Fottinger K., Rupprechter G., Methane dry reforming over ceriazirconia supported Ni catalysts. Catal. Today, 2016, 277, 234-245.Google Scholar

  • [28] Hadjiivanov K., Mihaylov M., Abadjieva N., and Klissurski D., Characterization of Ni/TiO2 catalysts prepared by successive adsorption-reduction of Ni2+ ions. J. Chem. Soc. Faraday Trans., 1998, 94, 3711-3716.CrossrefGoogle Scholar

  • [29] Sadykov V.A., Simonov M.N., Mezentseva N.V., Pavlova S.N., Fedorova Y.E., Bobin A.S., Bespalko Y.N., Ishchenko A.V., Krieger T.A., Glazneva T.S., Larina T.V., Cherepanova S.V., Kaichev V.V., Saraev A.A., Chesalov Y.A., Shmakov A.N., Roger A-C., Adamski A. Ni-Loaded Nanocrystalline Ceria-Zirconia Solid Solutions Prepared via Modified Pechini Route as Stable to Coking Catalysts of CH4 Dry Reforming. Open Chemistry, 2016, 14, 363-376.Google Scholar

About the article

Received: 2017-12-13

Accepted: 2017-12-15

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Catalysis for Sustainable Energy, Volume 4, Issue 1, Pages 73–82, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2017-0012.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in