Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Measurement of HDO Products Using GC-TCD: Towards Obtaining Reliable Analytical Data

Oman Zuas
  • Corresponding author
  • Gas Analysis Laboratory (GasAL), Chemical Metrology Laboratory, Research Centre for Metrology-Indonesian Institute of Sciences (RCM-LIPI), Building No. 456. Kawasan PUSPIPTEK Serpong 15314, Tangerang Selatan, Banten, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Harry Budiman
  • Gas Analysis Laboratory (GasAL), Chemical Metrology Laboratory, Research Centre for Metrology-Indonesian Institute of Sciences (RCM-LIPI), Building No. 456. Kawasan PUSPIPTEK Serpong 15314, Tangerang Selatan, Banten, Indonesia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieni Mansur
  • Thermochemistry Laboratory, Chemical Engineering Research Group, Research Centre for Chemistry- Indonesian Institute of Sciences (RCChem-LIPI), Building No. 421.Kawasan PUSPIPTEK Serpong 15314, Tangerang Selatan, Banten, Indonesia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhammad Rizky Mulyana
  • Gas Analysis Laboratory (GasAL), Chemical Metrology Laboratory, Research Centre for Metrology-Indonesian Institute of Sciences (RCM-LIPI), Building No. 456. Kawasan PUSPIPTEK Serpong 15314, Tangerang Selatan, Banten, Indonesia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-15 | DOI: https://doi.org/10.1515/cse-2018-0001


This paper reported the method development and validation of a gas chromatography with thermal conductivity detector (GC-TCD) method for the measurement of the gaseous products of hydrodeoxygenation (HDO). The method validation parameters include selectivity, precision (repeatability and reproducibility), accuracy, linearity, limit of detection (LoD), limit of quantitation (LoQ), and robustness. The results showed that the developed method was able to separate the target components (H2, CO2, CH4 and CO) from their mixtures without any special sample treatment. The validated method was selective, precise, accurate, and robust. Application of the developed and validated GC-TCD method to the measurement of by-product components of HDO of bio-oil revealed a good performance with relative standard deviation (RSD) less than 1.0% for all target components, implying that the process of method development and validation provides a trustworthy way of obtaining reliable analytical data.

Keywords: Biomass; catalytic hydrodeoxygenation; method validation; accurate measurement; reliable data


  • [1] Huber, G.W., Iborra, S., Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev., 2006, 106, 4044-4098.Google Scholar

  • [2] Wang, Y., Song, H., Peng, L., Zhang, Q., Yao, S., Recent developments in the catalytic conversion of cellulose, Biotechnol. Biotec., 2014, 28, 981-988.Web of ScienceGoogle Scholar

  • [3] Mohan, D., Pittman, C.U., Steele, P.H., Pyrolysis of wood/biomass for bio-oil: a critical review. Energ, Fuel., 2006, 20, 848-889.CrossrefGoogle Scholar

  • [4] Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenerg., 2012, 38, 68-94.Google Scholar

  • [5] Yaman, S., Pyrolysis of Biomass to produce Fuels and Chemical Feed Stocks, Energ.Convers. Manag., 2004, 45, 651-671.Google Scholar

  • [6] Zacher, A.H., Olarte, M.V., Santosa, D.M., Elliott, D.C., Jones, S.B., A review and perspective of recent bio-oil hydrotreating research, Green Chem., 2014, 16, 491-515.CrossrefGoogle Scholar

  • [7] Mortensena, P.M., Grunwaldt, J.-D., Jensena, P.A., Knudsenc, K.G., Jensen, A.D., A review of catalytic upgrading of bio-oil to engine fuels. App. Catal. A., 2011, 407, 1-19Google Scholar

  • [8] Bulushev, D.A., Ross, J.R.H., Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review., Catal. Today, 2011, 171, 1-13.Google Scholar

  • [9] Dickerson, T., Soria, J., Catalytic Fast Pyrolysis: A Review, Energies,. 2013, 6, 514-538.Google Scholar

  • [10] Vasiliadou, E.S., Lemonidou, A.A., Catalytic glycerol hydrodeoxygenation under inert atmosphere: Ethanol as a hydrogen donor, Catalysts, 2014, 4, 397-413.Google Scholar

  • [11] Balagurumurthy, B., Oza, T.S., T., B., Adhikari, D.P., Renewable hydrocarbons through biomass hydropyrolysis process: challenges and opportunities, J. Mater. Cycles Waste, 2013, 15, 9-15.Web of ScienceCrossrefGoogle Scholar

  • [12] Aresta, M., Dibenedetto, A., Dumeignil, F., Conversion of biomass to fuels and chemicals via thermochemical processes, in biorefinery : From Biomass to Chemicals and Fuels, 2012.Google Scholar

  • [13] Tran, N.T.T., Uemura, Y., Ramli, A., Hydrodeoxygenation of guaiacol over Al-MCM-41 supported metal catalysts: A comparative study of Co and Ni, Procedia Eng., 2016, 148, 1252-1258.Google Scholar

  • [14] Lee, H., Kim, H., Yu, M.J., Ko, C.H., Jeon, J.-K., Jae, J., et al., Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst, Sci. Rep-UK., 2016, 6, 1-8.Google Scholar

  • [15] Marsman, J.H., Wildschut, J., Mahfud, F., Heeres, H.J., Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection., J. Chromatogr. A., 2007, 1150, 21-27.Web of ScienceCrossrefGoogle Scholar

  • [16] Cheng, S., Wei, L., Zhao, X., Huamg, Y., Raynie, D., Qiu, C., et al., Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor, AIMS Energ., 2015, 3, 227-240.Google Scholar

  • [17] Foo, G.S., Rogers, A.K., Yung, M.M., C., S., Steric effect and evolution of surface species in the hydrodeoxygenation of bBio-oil model compounds over Pt/HBEA, ACS Catal., 2016, 6, 1292-1307.Google Scholar

  • [18] Zhang, X., Chen, L., Kong, W., Wang, T., Zhang, Q., Long, J., et al., Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process, Energy, 2015, 84, 83-90.Web of ScienceGoogle Scholar

  • [19] Xu, J., Jiang, J., Lv, W., Dai, W., Sun, Y., Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase, Biomass Bioenergy, 2010, 34, 1059-1063.Web of ScienceCrossrefGoogle Scholar

  • [20] Crepier, J., Masle, A.L., Charon, N., Albrieux, F., Heinisch, S., Development of a supercritical fluid chromatography method with ultraviolet and mass spectrometry detection for the characterization of biomass fast pyrolysis bio oils, J. Chromatogr. A., 2017, 1510, 73-81.CrossrefGoogle Scholar

  • [21] Zuas, O., Mulyana, M.R., Budiman, H., Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons C2-C4 in their gas mixture, Rev. Colomb. Quim., 2016, 45, 22-27.Web of ScienceGoogle Scholar

  • [22] Budiman, H., Zuas, O., Trace measurement of CO, CH4, and CO2 in high purity gases by GC-FID-methanizer: method validation and uncertainty estimation, St. Cerc. St. CICBIA., 2017, 18, 259-274.Google Scholar

  • [23] Budiman, H., Zuas, O., Validation of analytical method for determination of high level carbon dioxide (CO2) in nitrogen gas (N2) matrix using gas chromatography thermal conductivity detector, Period. Quimic., 2015, 12, 7-16.Google Scholar

  • [24] Eurachem. Guide: The fitness for purpose of analytical methods: A Laboratory Guide to Method Validation and Related Topics, 2nd Ed., Available from https://www.eurachem.org/.2014.Google Scholar

  • [25] Taverniers, I., Loose, M.D., Van Bockstaele, E., Trends in quality in the analytical laboratory, II: Analytical method validation and quality assurance, Trac-Trend in Anal. Chem., 2004a, 23, 535-552.Google Scholar

  • [26] ALACC. Guide 3: How to meet ISO 17025 requirements for method verification, The Analytical Laboratory Accreditation Criteria Committee, AOAC International, Maryland, USA. 2007.Google Scholar

  • [27] Huber, L., Validation of analytical methods, Agilent Technologies, Printed in Germany, March 1, Publication Number 5990-5140E, Available from www.agilent.com/chem/. 2010.Google Scholar

  • [28] ISO/IEC., Guide ISO/IEC 17025: General requirements for the competence of testing and calibration laboratories, 2nd Edition, Switzerland. 2005.Google Scholar

  • [29] Mansur, D., Rahayu, E.P., Fitriady, M.A., Simanungkalit, S.P., Hydrodeoxygenation process of biocrude oil derived from palm kernel shells to increase its calorific value, Basic & Applied Sciences: Interdisciplinary Conference, Depok Universitas Indonesia, 18-19 Agustus 2017. 2017 (in press).Google Scholar

  • [30] ISO. ISO-6142: Gas analysis - Preparation of calibration gas mixtures - Part 1: Gravimetric method for Class I mixtures, Geneva, Switzerland. 2015.Google Scholar

  • [31] Zuas, O., Budiman, H., Estimating precision and accuracy of GC-TCD method for carbon dioxide, propane and carbon monoxide determination at different flow rate of carrier gas, Hem. Ind., 2016, 70, 451-459.Google Scholar

  • [32] Zuas, O., Budiman, H., Hamim, N., Measurement of SF6 using gc-ecd: a comparative study on the utilization of CO2-N2 mixture and CH4-Ar mixture as a make-up gas, Chem. & Chem. Technol., 2017, 11, 420-429.Google Scholar

  • [33] Zuas, O., Budiman, H., Flow rate of carrier gas affecting the key parameters of GC-TCD for CO2, C3H8, and CO analysis: an experimental investigation, Teknol. Indonesia, 2016, 39, 1-10.Google Scholar

  • [34] NATA., Guidelines for the validation and verification of quantitative and qualitative test methods, The National Association of Testing Authorities (NATA), Available from http://www.nata.com.au/.2013.Google Scholar

  • [35] Wildschut, J., Mahfud, F.H., Venderbosch, R.H., Herees, H.J., Hydrotreatment of fast pyrolysis oil Using heterogeneous noble-metal catalysts, Ind. Eng. Chem. Res., 2009, 48, 10324-10334.Web of ScienceCrossrefGoogle Scholar

  • [36] Fabing, S., Chee, K., Zhiqun., T., Jiajian, G., Zhaolin, L., Jianyi, L., et al., Nanostructured trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC catalysts for methanol electrooxidation, J. Mater. Chem., 2012, 22, 13643-13652.CrossrefGoogle Scholar

  • [37] Barwick, V.J., Sources of uncertainty in gas chromatography and high-performance liquid chromatography, J. Chromatogr. A., 1999, 849, 13-33.Google Scholar

  • [38] IUPAC., Selectivity in analytical chemistry, Pure Appl. Chem., 2001, 73, 1381-1386.Google Scholar

  • [39] Guaratini, T., Cardozo, K.H.M., Pinto, E., Colepicolo, O., Comparison of diode array andelectrochemical detection in the C30 reverse phase HPLC analysis of algae carotenoids, J. Brazilian Chem. Soc., 2003, 20, 1609-1616.Google Scholar

  • [40] ICH., Validation of analytical procedures: Text and methodology, adopted in 1996, Geneva Q2B, in 2006 incorporated in Q2(R1), Available at http://www.ich.org/.2006.Google Scholar

  • [41] Linsinger, T.P.J., Josephs, R.D., Limitations of the application of the Horwitz equation, Trac-Trend Anal. Chem., 2006, 25, 1125-1130.CrossrefGoogle Scholar

  • [42] Taverniers, I., Van Bockstaele, E., Loose, M.D., Trends in quality in the analytical laboratory, I: Traceability and measurement uncertainty of analytical results, Trac-Trend in Anal. Chem., 2004b, 23, 480-490.Google Scholar

  • [43] Hovind, H., Magnusson, B., Krysell, M., Lund, U., Makine, I., Internal Quality Controll-Handbook for chemical laboratories, NORDTEST Report TR 569, Nordic Innovation Stensberggata, Oslo, Norway. 2011.Google Scholar

  • [44] Masson, P., Quality control techniques for routine analysis with liquid chromatography in laboratories, J. Chromatogr. A., 2007, 1158, 168-173.Web of ScienceCrossrefGoogle Scholar

  • [45] ISO. Guide 33: Uses of certified reference materials, Available at: http://www.iso.org/iso/. 2000.Google Scholar

  • [46] Venderbosch, R.H., Ardiyanti, A.R., Wildschut, J., Oasmaac, A., Heeres, H.J., Stabilization of biomass-derived pyrolysis oils, J. Chem Technol Biotechnol., 2010, 85, 674-686.Google Scholar

  • [47] Vispute, T.P., Zhang, H.Y., Sanna, A., Xiao, R., Huber, G.W., Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils, Science, 2010, 330, 1222-1227.Web of ScienceGoogle Scholar

  • [48] Jahromi, H., Agblevor, F.A., Upgrading of pinyon juniper catalytic pyrolysis oil via hydrodeoxygenation, Energy, 2017, 114, 2186-2195.Web of ScienceGoogle Scholar

  • [49] Boscagli, C., Raffelt, K., Grunwaldt, J.D., Reactivity of platform molecules in pyrolysis oil and in water during hydrotreatment over nickel and ruthenium catalysts, Biomass Bioenergy, 2017, 106, 63-73.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-09-26

Accepted: 2018-02-06

Published Online: 2018-03-15

Citation Information: Catalysis for Sustainable Energy, Volume 5, Issue 1, Pages 1–11, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2018-0001.

Export Citation

© 2018, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Oman Zuas, Muhammad Rizky Mulyana, Harry Budiman, Ayu Hindayani, Dyah Styarini, Fransiska Sri Herwahyu Krismastuti, and Bernadus Herdi Sirenden
IOP Conference Series: Materials Science and Engineering, 2019, Volume 536, Page 012006

Comments (0)

Please log in or register to comment.
Log in