Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
Online
ISSN
2084-6819
See all formats and pricing
More options …

Formation of Zn- and Si-Based Oxide Systems: Analysis of Temperature Dependence of the Energy State

Anton S. Brichkov / Svetlana A. Kuznetsova / Evgeniya A. Mongush / Viktoriya U. Brichkova / Anastasiya V. Zabolotskaya / Tatiana S. Glazneva
Published Online: 2018-10-31 | DOI: https://doi.org/10.1515/cse-2018-0004

Abstract

This article presents the results of the thermal analysis of dried colloidal solutions based on zinc nitrate with changes in tetraethoxysilane (TEOS) content. The main stages of the thermal decomposition of the dried sols were established and the activation energies of each stage were determined based on the results of thermogravimetric measurements using the Erofeev-Kolmogorov approach. For each stage, the products of thermal destruction in the gas phase were determined by mass-spectrometry. It was shown that the chemical decomposition in all samples started at a temperature above 200°C, and the temperature of zinc hydroxonitrate decomposition increased with increasing TEOS content in the ash, while the activation energy of that process decreased. X-ray diffraction analysis revealed that the thermal decomposition of dried sols at 600°C resulted in the formation of mixtures of ZnO in hexagonal syngony with amorphous SiO2 in amounts from 10 to 50 wt%.

Keywords: thermal decomposition; zinc oxide; silica; activation energy

References

  • [1] Hu E.-T., Liu X.-X.,. Cai Q.-Y, Yao Y., Zang K.-Y., Yu K.-H., Wei W., Xu X.-X., Zheng Y.-X., Wang S.-Y., Zhang R.-J., Chen L.-Y., Tunable optical properties of co-sputtered Ti-SiO2 nanocomposite thin films, Opt. Mater. Express, 2017, 7, 2387-2395.CrossrefGoogle Scholar

  • [2] Kiryukhantsev-Korneev Ph.V., Iatsyuk I.V., Shvindina N.V., Levashov E.A., Shtansky D.V., Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo-Si-B and Mo-Al-Si-B coatings, Corros. Sci., 2017, 123, 319-327.Web of ScienceGoogle Scholar

  • [3] Zhao M., Wong M.H., Ong C.W., Ng N.H., Man H.C., Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays, Sensor. Actuat. B Chem., 2018, 255, 944-951.Google Scholar

  • [4] Hu M., Cao Y., Li Z., Yang S., Xing Z., Ti3+ self-doped mesoporous black TiO2/SiO2 nanocomposite as remarkable visible light photocatalyst, Appl. Surf. Sci., 2017, 426, 734-744.Google Scholar

  • [5] Alhaji A., Shoja Razavi R., Ghasemi A., Loghman-Estarki M.R., Ghorbani S., Study of crystallization behavior and kinetics of yttria-50 vol% magnesia composite nanopowders using a non-isothermal process, J. Sol-Gel Sci. Technol., 2018, 85, 93-102.Google Scholar

  • [6] Ghaderi F., Nemati M., Reza Siahi-Shadbad M., Valizadeh H., Monajjemzadeh F., Evaluation of activation energy conformity derived from model-free non-isothermal predictions and Arrhenius isothermal results, J. Therm. Anal. Calorim., 2017, 130, 1417-1427.Web of ScienceGoogle Scholar

  • [7] Li Y.-F., Zhai L.-J., Xu K.-Z., Wang B.-Z., Song J.-R., Zhao F.-Q., Thermal behaviors of a novel nitrogen-rich energetic compound, J. Therm. Anal. Calorim., 2016, 126, 1167-1173.Google Scholar

  • [8] Brichkov A., Brichkova V., Egorova L., Malchik A., Kozik V., The thermal analysis data of the hydrolysates of the film-forming solutions, containing tetraethoxysilane and Mn2+, Fe3+, Co2+, Ni2+, Key Eng. Mater., 2016, 683, 106-112.Google Scholar

  • [9] Shamsutdinova A.N., Brichkov A.S., Paukshtis E.A., Larina T.V., Cherepanova S.V., Glazneva T.S., Kozik V.V., Composite TiO2/ fiberglass catalyst: synthesis and characterization, Catal. Commun., 2017, 89, 64-68.CrossrefGoogle Scholar

  • [10] Ali A.M., Ismail A.A., Bouzid H., Harraz F.A., Sol-gel synthesis of ZnO-SiO2 thin films: impact of ZnO contents on its photonic efficiency, J. Sol-Gel Sci. Technol., 2014, 71, 224-233.Google Scholar

  • [11] Grigorie A.C., Muntean C., Vlase T., Locovei C., Stefanescu M., ZnO-SiO2 based nanocomposites prepared by a modified sol-gel method, Mater. Chem. Phys., 2017, 186, 399-406.Google Scholar

  • [12] Nakamur N., Kima J., Yamamoto K., Watanabe S., Hosono H., Organic light-emitting diode lighting with high out-coupling and reliability: Application of transparent amorphous ZnO-SiO2 semiconductor thick film, Org. Electron., 2017, 51, 103-110.Google Scholar

  • [13] Samavati A., Nur H., Ismail A.F., Othaman Z., Radio frequency magnetron sputtered ZnO/SiO2/glass thin film: Role of ZnO thickness on structural and optical properties, J. Alloy. Compd., 2016, 671, 170-176.Google Scholar

  • [14] Sharma M., Hazra S., Basu S., Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO-SiO2 monolith, J. Colloid Interf. Sci., 2017, 504, 669-679.Google Scholar

  • [15] Hagura N., Takeuchi T., Takayama S., Iskandar F., Okuyama K., Enhanced photoluminescence of ZnO-SiO2 nanocomposite particles and the analyses of structure and composition, J. Lumin., 2011, 131, 138-146.Google Scholar

  • [16] Sivakami R., Thiyagarajan P., The effect of citric acid on morphology and photoluminescence properties of white light emitting ZnO-SiO2 nanocomposites, Photonic. Nanostruct., 2016, 20, 31-40.Google Scholar

  • [17] Tomer V.K., Duhan S., Sharma A.K., Malik R., Nehra S.P., Devi S., One pot synthesis of mesoporous ZnO-SiO2 nanocomposite as high performance humidity sensor, Colloids Surf. A Physicochem. Eng. Asp., 2015, 483, 121-128.Google Scholar

  • [18] Kim J.-U., Yuk Y.-S., Kim J.-G., Preparation of ZnO/SiO2 nano-composition and photocatalysts and antibacterial activity, J. Korean Chem. Soc., 2017, 61, 179-184.Google Scholar

  • [19] Li Y., Liu X., Tan L., Cui Z., Yang X., Yeung K.W.K., Pan H., Wu S., Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants, Mater. Sci. Eng. C, 2017, 76, 50-58.Google Scholar

  • [20] Galedari N.A., Rahmani M., Tasbihi M., Preparation, characterization, and application of ZnO-SiO2 core-shell structured catalyst for photocatalytic degradation of phenol, Environ. Sci. Pollut. Res., 2017, 24, 12655-12663.CrossrefGoogle Scholar

  • [21] Barani H., Preparation of antibacterial coating based on in situ synthesis of ZnO/SiO2 hybrid nanocomposite on cotton fabric, Appl. Surf. Sci., 2014, 320, 429-434.Google Scholar

  • [22] Ali A.M., Ismail A.A., Najmy R., Al-Hajry A., Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst, J. Photochem. Photobiol. A, 2014, 275, 37-46.Web of ScienceGoogle Scholar

  • [23] Gorbachev V.M., To the problem of applying the equation of Kolmogorov, Erofeev, Kazeev, Avrami and Mampel to the kinetics of non-isothermal transformations, J. Therm. Anal. Calorim., 1981, 20, 483-485.CrossrefGoogle Scholar

  • [24] Pysiak J., Glinka A., Thermal decomposition of basic aluminum potassium sulfate. Part II. Kinetics of the reaction, Thermochim. Acta, 1981, 44, 29-36.Google Scholar

  • [25] Brinker C.F., Scherer G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.Google Scholar

About the article

Received: 2018-08-27

Accepted: 2018-09-05

Published Online: 2018-10-31

Published in Print: 2018-10-01


Citation Information: Catalysis for Sustainable Energy, Volume 5, Issue 1, Pages 28–33, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2018-0004.

Export Citation

© by Anton S. Brichkov, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in