Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Catalysis for Sustainable Energy

Open Access
See all formats and pricing
More options …

Hydrogen generation by both acidic and catalytic hydrolysis of sodium borohydride

Olga V. Netskina
  • Corresponding author
  • Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tihon N. Filippov
  • Photocatalysis group, Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oksana V. Komova
  • Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valentina I. Simagina
  • Laboratory of Hydrides Investigation, Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/cse-2018-0006


Sodium borohydride tablets have been employed as hydrogen-storage materials. Hydrogen release was performed by acidic hydrolysis where solutions of sulfuric and hydrochloric acids were added to the tablets, and by catalytic hydrolysis where water was added tablets of solid-state NaBH4/Co composite. In acidic solutions hydrogen evolution occurred instantaneously, and at high concentrations of acids the releasing hydrogen contained an admixture of diborane. Hydrogen evolution from the solidstate NaBH4/Co composite proceeded at a uniform rate of 13.8±0.1 cm3·min-1, water vapor being the only impurity in the evolving gas.

Keywords: Hydrogen; sodium borohydride; acid hydrolysis; diborane; catalyst hydrolysis


  • [1] Abdalla A.M., Hossain S., Nisfindy O.B., Azad A.T., Dawood M., Azad A.K., Hydrogen production, storage, transportation and key challenges with applications: A review, Energ. Convers. Manage., 2018, 165, 602-627.Google Scholar

  • [2] Züttel A., Hydrogen storage methods, Naturwissenschaften, 2004, 91, 157-172.CrossrefGoogle Scholar

  • [3] Niaz S., Manzoor T., Pandith A.H., Hydrogen storage: Materials, methods and perspectives, Renew. Sust. Energ. Rev. 2015, 50, 457-469.Google Scholar

  • [4] Zacharia R., Rather S.U., Review of solid state hydrogen storage methods adopting different kinds of novel materials, J. Nanomater., 2015, 2015, 914845.Google Scholar

  • [5] Durbin D.J., Malardier-Jugroot C., Review of hydrogen storage techniques for on board vehicle applications, Int. J. Hydrogen Energy., 2013, 38, 14595-14617.Google Scholar

  • [6] Pukazhselvan D., Kumar V., Singh S.K., High capacity hydrogen storage: Basic aspects, new developments and milestones, Nano Energy. 2012, 1, 566-589.Google Scholar

  • [7] Jiang H.-L., Singh S.K., Yan J.-M., Zhang X.-B., Xu Q., Liquid-Phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions, ChemSusChem, 2010, 3, 541-549.CrossrefGoogle Scholar

  • [8] Mohtadi R., Remhof A., Jena P., Complex metal borohydrides: Multifunctional materials for energy storage and conversion, J. Phys.: Condens. Matter., 28 (2016) 353001.Google Scholar

  • [9] Ley M.B., Jepsen L.H., Lee Y.-S., Cho Y.W., Bellosta Von Colbe J.M., Dornheim M., Rokni M., Jensen J.O., Sloth M., et al., Complex hydrides for hydrogen storage - New perspectives, Mater. Today, 2014, 17, 122-128.CrossrefGoogle Scholar

  • [10] Yadav M., Xu Q., Liquid-phase chemical hydrogen storage materials, Energy Environ Sci., 2012, 5, 9698-9725.Google Scholar

  • [11] Chen P., Hydrogen storage: Liquid and chemical, In: A. Sayigh (Ed.), Comprehensive Renewable Energy: Fuel Cells and Hydrogen Technology, Elsevier Ltd., Amsterdam, 2012.Google Scholar

  • [12] Li H.-W., Yan Y., Orimo S.-I., Züttel A., Jensen C.M., Recent progress in metal borohydrides for hydrogen storage, Energies., 2011, 4, 185-214.Google Scholar

  • [13] Jain I.P., Jain P., Jain A., Novel hydrogen storage materials: A review of lightweight complex hydrides, J. Alloys Compd., 2010, 503, 303-339.Google Scholar

  • [14] Kong V.C.Y., Foulkes F.R., Kirk D.W., Hinatsu J.T., Development of hydrogen storage for fuel cell generators. I: Hydrogen generation using hydrolysis hydrides, Int. J. Hydrogen Energy., 1999, 24, 665-675.Google Scholar

  • [15] Fakioglu E., Yurum Y., Veziroglu T.N., A review of hydrogen storage systems based on boron and its, Int. J. Hydrogen Energy., 2004, 29, 1371-1376.Google Scholar

  • [16] Akkuş M.S., Murathan H.B., Özgür D.Ö., Özkan G., Özkan G., New insights on the mechanism of vapour phase hydrolysis of sodium borohydride in a fed-batch reactor, Int. J. Hydrogen Energy., 2018, 43, 10734-10740.Google Scholar

  • [17] Demirci U.B., Akdim O., Andrieux J., Hannauer J., Chamoun R., Miele P., Sodium borohydride hydrolysis as hydrogen generator: Issues, state of the art and applicability upstream from a fuel cell, Fuel Cells., 2010, 10, 335-350.Google Scholar

  • [18] Liu B.H., Li Z.P., A review: Hydrogen generation from borohydride hydrolysis reaction, J. Power Sources, 2009, 187, 527-534.Google Scholar

  • [19] Demirci U.B., Miele P., Cobalt in NaBH4 hydrolysis, Phys. Chem. Chem. Phys., 2010, 12, 14651-14665.CrossrefGoogle Scholar

  • [20] Zhong H., Ouyang L.Z., Ye J.S., Liu J.W., Wang H., Yao X.D., Zhu M., An one-step approach towards hydrogen production and storage through regeneration of NaBH4, Energy Storage Materials, 2017, 7, 222-228.Google Scholar

  • [21] Manna J., Roy B., Sharma P., Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst, J. Power Sources, 2015, 275, 727-733.Google Scholar

  • [22] Nabid M.R., Bide Y., Fereidouni N., Boron and nitrogen co-doped carbon dots as a metal-free catalyst for hydrogen generation from sodium borohydride, New J. Chem., 2016, 40, 8823-8828.Google Scholar

  • [23] Kim H.J., Shin K.-J., Kim H.-J., Han M.K., Kim H., Shul Y.-G., Jung K.T., Hydrogen generation from aqueous acid-catalyzed hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 2010, 35, 12239-12245.Google Scholar

  • [24] Akdim O., Demirci U.B., Miele P., Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride, Int. J. Hydrogen Energy, 2009, 34, 7231-7238.Google Scholar

  • [25] Balbay A., Sahin O., Hydrogen production from sodium borohydride in boric acid water mixtures., Energ. Source Part A., 2014, 36, 1166-1174.Google Scholar

  • [26] Balbay A., Saka C., Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst, Energ. Source Part A., 2018, 40, 794-804.Google Scholar

  • [27] Javed U., Subramanian V.(R.), Hydrogen generation using a borohydride-based semi-continuous milli-scale reactor: Effects of physicochemical parameters on hydrogen yield, Energy Fuels, 2009, 23, 408-413.CrossrefGoogle Scholar

  • [28] Murugesan S., Subramanian V.(R.), Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices, J. Power Sources, 2009, 187, 216-223.Google Scholar

  • [29] Abdul-Majeed W.S., Arslan M.T., Zimmerman W.B., Application of acidic accelerator for production of pure hydrogen from NaBH4, Int. J. Ind. Chem., 2014, 5, 15.Google Scholar

  • [30] Minkina V.G., Shabunya S.I., Kalinin V.I., Martynenko V.V., Stability of aqueous-alkaline sodium borohydride formulations, Russ. J. Appl. Chem., 2008, 81, 380-385.Google Scholar

  • [31] Minkina V.G., Shabunya S.I., Kalinin V.I., Martynenko V.V., Smirnova A.L., Stability of Alkaline Aqueous Solutions of Sodium Borohydride, Int. J. Hydrogen Energy, 2012, 37, 3313-3318.Google Scholar

  • [32] Netskina O.V., Komova O.V., Mukha S.A., Simagina V.I., Aqueous-alkaline NaBH4 solutions: The influence of hydride decomposition on catalytic properties of Co3O4, Catal. Commun., 2016, 85, 9-12.Google Scholar

  • [33] Netskina O.V., Komova O.V., Simagina V.I., Odegova G.V., Prosvirin I.P., Bulavchenko O.A., Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts, Renewable Energy, 2016, 99, 1073-1081.Google Scholar

  • [34] Liu B.H., Li Z.P., Suda S., Solid sodium borohydride as a hydrogen source for fuel cells, J. Alloys Compd., 2009, 468, 493-498.Google Scholar

  • [35] Liu C.-H., Kuo Y.-C., Chen B.-H., Hsueh C.-L., Hwang K.-J., Ku J.-R., Tsau F., Jeng M.-S., Synthesis of solid-state NaBH4/ Co-based catalyst composite for hydrogen storage through a high-energy ball-milling, Int. J. Hydrogen Energy, 2010, 35, 4027-4040.Google Scholar

  • [36] Netskina O.V., Ozerova A.M., Komova O.V., Odegova G.V., Simagina V.I., Hydrogen storage systems based on solid-state NaBH4/CoxB composite: Influence of catalyst properties on hydrogen generation rate, Catal. Today, 2015, 245, 86-92.Google Scholar

  • [37] Netskina O.V., Komova O.V., Prosvirin I.P., Pochtar’ A.A., Ozerova A.M., Simagina V.I., Solid-State Hydrogen-Generating Composites Based on Sodium Borohydride: Effect of the Heat Treatment of Boron-Cobalt Catalysts on the Hydrogen Generation Rate, Russ. J. Appl. Chem., 2017, 90, 1666-1673.Google Scholar

  • [38] Simagina V.I., Ozerova A.M., Komova O.V., Odegova G.V., Kellerman D.G., Fursenko R.V., Odintsov E.S., Netskina O.V., Cobalt boride catalysts for small-scale energy application, Catal. Today, 2015, 242, 221-229.Google Scholar

  • [39] Netskina O.V., Ozerova A.M., Komova O.V., Kochubey D.I., Kanazhevskiy V.V., Ishchenko A.V., Simagina V.I., The effect of heat-treatment temperature of cobalt-boron catalysts on their activity in sodium borohydride hydrolysis, Top. Catal., 2016, 59, 1431-1437.Google Scholar

  • [40] Netskina O.V., Kochubey D.I., Prosvirin I.P., Malykhin S.E., Komova O.V., Kanazhevskiy V.V., Chukalkin Yu.G., Bobrovskii V.I., Kellerman D.G., Ishchenko A.V., et al., Cobalt-boron catalyst for NaBH4 hydrolysis: The state of the active component forming from cobalt chloride in a reaction medium, Mol. Catal., 2017, 441, 100-108.Google Scholar

  • [41] NIST Chemistry WebBook: NIST Standard Reference Database, No 69, 2018. https://webbook.nist.gov/chemistry.Google Scholar

  • [42] Devlin J.P., Sadlej J., Buch V., Infrared Spectra of Large H2O Clusters: New Understanding of the Elusive Bending Mode of Ice, J. Phys. Chem. A, 2001, 105, 974-983.Google Scholar

  • [43] Roscioli J.R., Diken E.G., Johnson M.A., Horvath S., McCoy A.B., Prying Apart a Water Molecule with Anionic H-Bonding: A Comparative Spectroscopic Study of the X-·H2O (X = OH, O, F, Cl, and Br) Binary Complexes in the 600−3800 cm-1 Region, J. Phys. Chem. A, 2006, 110, 4943-4952.Google Scholar

  • [44] Brubach J.-B., Mermet A., Filabozzi A., Gerschel A., Roy P., Signatures of the hydrogen bonding in the infrared bands of water, J. Chem. Phys., 2005, 122, 184509.Google Scholar

  • [45] Brack P., Dann S.E., Upul Wijayantha K.G., Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride NaBH4 solutions, Energy Sci. Eng., 2015, 3, 174-188.Google Scholar

  • [46] Simagina V.I., Komova O.V., Netskina O.V., Nano-sized cobalt catalysts for hydrogen storage systems based on ammonia borane and sodium borohydride, In: A.A. Gromov, U. Teipel (Eds.), Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Verlag, 2014.Google Scholar

  • [47] Bell R.P., Longuet-Higgins H.C., The normal vibrations of bridged X2Y6 molecules, Proc. R. Soc. London, A., 1945, 183, 357-374.Google Scholar

  • [48] Price W.C., The absorption spectrum of diborane, J. Chem. Phys., 1948, 16, 894-902.Google Scholar

  • [49] Song Y., Murli C., Liu Z., In situ high-pressure study of diborane by infrared spectroscopy, J. Chem. Phys., 2009, 131, 174506.Google Scholar

  • [50] Davis R.E., Swain C.G., General acid catalysis of the hydrolysis of sodium borohydride, J. Am. Chem. Soc., 1960, 82, 5949-5950.CrossrefGoogle Scholar

  • [51] Kreevoy M.M., Hutchins J.E.C., H2BH3 as intermediate in tetrahydridoborate hydrolysis, J. Am. Chem. Soc., 1972, 94, 6371-6376.CrossrefGoogle Scholar

  • [52] Olah G.A., Westerman P.W., Mo Y.K., Klopman G., Electrophilic reactions at single bonds. VII. Hydrogen-deuterium exchange accompanying protolysis (deuterolysis) of the borohydride and aluminum hydride anion with anhydrous strong acids. The intermediacy of pentahydroboron (BH5) and pentahydroaluminum (AlH5) and their structural relationship with the methonium ion (CH5 +), J. Am. Chem. Soc., 1972, 94, 7859-7862.CrossrefGoogle Scholar

  • [53] Willen R., Possible mechanisms of the reaction between tetrahydroborate and hydrogen ion: A permutational analysis, J. Chem. Soc., Dalton Trans., 1979, 1, 33-40.Google Scholar

  • [54] Davis R.E., Boron hydrides. IV. Concerning the geometry of the activated complex in hydrolysis of borohydride ion by trimethylammonium ion, J. Am. Chem. Soc., 1962, 84, 892-894.CrossrefGoogle Scholar

  • [55] Levine L.A., Kreevoy M.M., Solvent isotope effects on tetrahydridoborate hydrolysis, J. Am. Chem. Soc., 1972, 94, 3346-3349.CrossrefGoogle Scholar

  • [56] Schlesinger H.I., Brown H.C., Metallo Borohydrides. III. Lithium Borohydride, J. Am. Chem. Soc., 1940, 62, 3429-3435.CrossrefGoogle Scholar

  • [57] Brown H.C., Schlesinger H.I., Sheft I., Ritter D.M., Addition Compounds of Alkali Metal Hydrides. Sodium Trimethoxyborohydride and Related Compounds, J. Am. Chem. Soc., 1953, 75, 192-195.Google Scholar

  • [58] Duke B.J., Gulbert J.R., Read I.A., Preparation and purification of diborane, J. Chem. Soc. A., 1964, 540-542.Google Scholar

  • [59] Weiss H.G., Shapiro I., Diborane from the sodium borohydridesulfuric acid reaction, J. Am. Chem. Soc., 1959, 81, 6167-6168.Google Scholar

  • [60] Dunn J.P., Koppula P.R., Stenger H.G., Wachs I.E., Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Catal. B, 1998, 19, 103-117.CrossrefGoogle Scholar

  • [61] Liu Y.-T., Tsai M.-T., Liu C.-Y., Tsai P.-Y., Lin K.-C., Shih Y.H., Chang A.H.H., Photodissociation of gaseous acetyl chloride at 248 nm by time-resolved fourier-transform infrared spectroscopy: The HCl, CO, and CH2 product channels, J. Phys. Chem. A, 2010, 114, 7275-7283.Google Scholar

  • [62] Robertson E.G., Medcraft C., Puskar L., Tuckermann R., Thompson C.D., Bauereckerc S., McNaughtona D., IR spectroscopy of physical and chemical transformations in cold hydrogen chloride and ammonia aerosols, Phys. Chem. Chem. Phys., 2009, 11, 7853-7860.CrossrefGoogle Scholar

  • [63] Zhao J.Z., Ma H., Chen J., Improved hydrogen generation from alkaline solution using carbon-supported Co-B as catalysts, Int. J. Hydrogen Energy, 2007, 32, 4711-4716.Google Scholar

  • [64] Andrieux J., Swierczynski D., Laversenne L., Garron A., Bennici S., Goutaudier C., Miele P., Auroux A., Bonnetot B., A multifactor study of catalyzed hydrolysis of solid NaBH4 on cobalt nanoparticles: thermodynamics and kinetics, Int. J. Hydrogen Energy, 2009, 34, 939-951.Google Scholar

  • [65] Rakap M., Ozkar S., Intrazeolite cobalt (0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride, Appl. Catal. B, 2009, 91, 21-29.Google Scholar

  • [66] Zhang X., Zhao J., Cheng F., Liang J., Tao Z., Chen J., Electrolessdeposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution, Int. J. Hydrogen Energy, 2010, 35, 8363-8369.Google Scholar

  • [67] Amendola S.C., Sharp-Goldman S.L., Janjua M.S., Kelly M.T., Petillo P.J., Binder M., An ultrasafe hydrogen gas generator: aqueous, alkaline borohydride solutions and Ru Catalyst, J. Power Sources, 2000, 85, 186-189.Google Scholar

  • [68] Hsueh C.-L., Chen C.-Y., Ku J.-R., Tsai S.-F., Hsu Y.-Y., Tsau F., Jeng M.-S., Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution, J. Power Sources, 2008, 177, 485-492.Google Scholar

  • [69] Liang Y., Dai B.H., Ma L.P., Wang P., Cheng H.M., Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst, Int. J. Hydrogen Energy, 2010, 35, 3023-3028.Google Scholar

  • [70] Ozkar S., Zahmakiran M., Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst, J. Alloys Compd., 2005, 404-406, 728-731.Google Scholar

  • [71] Hua D., Hanxi Y., Xinping A., Chuansin C., Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst, Int. J. Hydrogen Energy, 2003, 28, 1095-1100.Google Scholar

  • [72] Metin O., Ozkar S., Hydrogen generation from the hydrolysis of sodium borohydride by using water dispersible, hydrogenphosphate- stabilized nickel (0) nanoclusters as catalyst, Int. J. Hydrogen Energy, 2007, 32, 1707-1715.Google Scholar

  • [73] Liu B.H., Li Z.P., Suda S., Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride, J. Alloys Compd., 2006, 415, 288-293.Google Scholar

  • [74] Guella G., Patton B., Miotello A., Kinetic features of the platinum catalyzed hydrolysis of sodium borohydride from 11B NMR measurements, J. Phys. Chem. C, 2007, 111, 18744-18750.Google Scholar

  • [75] Ingersoll J.C., Mani N., Thenmozhihal J.C., Muthaiah A., Catalytic hydrolysis of sodium borohydride by a novel nickel-cobaltboride catalyst, J. Power Sources, 2007, 173, 450-474.Google Scholar

  • [76] Liu C.H., Chen B.H., Hsueh C.L., Ku J.R., Jeng M.S., Tsau F., Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts, Int. J. Hydrogen Energy, 2009, 34, 2153-2163.Google Scholar

  • [77] Mitov M., Rashkov R., Atanassov N., Effects of nickel foam dimensions on catalytic activity of supported Co-Mn-B nanocomposites for hydrogen generation from stabilized borohydride solutions, J. Mater. Sci., 2007, 42, 3367-3372.Google Scholar

  • [78] Vasu G., Tangirala A.K., Viswanathan B., Dhathathreyan K.S., Continous bubble humidification and control of relative humidity of H2 for a PEMFC system, Int. J. Hydrogen Energy, 2008, 33, 4640-4648.Google Scholar

About the article

Received: 2018-10-09

Accepted: 2018-10-16

Published Online: 2018-12-31

Published in Print: 2018-12-01

Citation Information: Catalysis for Sustainable Energy, Volume 5, Issue 1, Pages 41–48, ISSN (Online) 2084-6819, DOI: https://doi.org/10.1515/cse-2018-0006.

Export Citation

© by Olga V. Netskina, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

O.V. Netskina, E.S. Tayban, I.P. Prosvirin, O.V. Komova, and V.I. Simagina
Renewable Energy, 2019

Comments (0)

Please log in or register to comment.
Log in