Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Contemporary Trends in Geoscience

The Journal of Uniwersytet Slaski

2 Issues per year

Open Access
Online
ISSN
2299-8179
See all formats and pricing
More options …

Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

Krzysztof Zawierucha
  • Corresponding author
  • Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Ostrowska
  • Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Kolicka
  • Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-06 | DOI: https://doi.org/10.1515/ctg-2017-0001

Abstract

For several years it has been of interest to astrobiologists to focus on Earth’s glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia – cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.

Keywords: astrobiology; extremophiles; icy planets; icy moons; invertebrates

References

  • Abbot D.S., Voigt A., Li D., et al. (2013) Robust elements of Snowball Earth atmospheric circulation and oases for life. Journal of Geophysical Research: Atmospheres 118: 6017-6027.CrossrefGoogle Scholar

  • Amann R., Fuchs B.M., Behrens S. (2001) The identification of microorganisms by fluorescence in situ hybridisation. Current Opinion in Biotechnology 12: 231-236.CrossrefGoogle Scholar

  • Anesio A.M., Laybourn-Parry J. (2012) Glaciers and ice sheets as a biome. Trends in Ecology & Evolution 4: 219-225.CrossrefGoogle Scholar

  • Baqué M., de Vera J.P., Rettberg P., et al. (2013) The BOSS and BIOMEX space experiments on the EXPOSE–R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronomica 91: 180-186.CrossrefGoogle Scholar

  • Bellas C.M., Anesio A.M., Telling J., et al. (2013) Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters 8 045021 (9pp), doi:10.1088/1748-9326/8/4/045021Google Scholar

  • Bielewicz S., Bell E., Kong W., et al. (2011) Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition. The ISME Journal 5: 1559-1564.CrossrefGoogle Scholar

  • Bradbury J. (2001) Of tardigrades, trehalose, and tissue engineering. The Lancet 358: 392.Google Scholar

  • Boetius A., Anesio A.M., Deming J.W., et al. (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nature Reviews Microbiology 13: 677-690CrossrefGoogle Scholar

  • Christner B.C., Mosley-Thompson E., Thompson L.G., et al. (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology 3: 570-577.CrossrefGoogle Scholar

  • Clegg J.S. (2001) Cryptobiosis – a peculiar state of biological organization. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 128: 613-624.Google Scholar

  • Chela-Flores J., Seckbach J. (2011) The Dry Valley Lakes, Antarctica: A key to evolutionary biomarkers on Europa and elsewhere. Instruments, Methods, and Missions for Astrobiology XIV. [In:] Proceedings of the SPIE (eds. R.B. Hoover, P.C. Davies, G.V. Levin, A.Y. Rozanov) vol. 8152, pp. 81520R-81520, R-8. doi: 10.1117/12.898763Google Scholar

  • Cook J., Edwards A., Bulling A., et al. (2016) Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environmental Microbiology 18: 4674-4686.CrossrefGoogle Scholar

  • Cook J., Edwards A., Takeuchi N., Irvine-Fynn T. (2015). Cryoconite. The dark biological secret of the cryosphere. Progress in Physical Geography 40: 1-46.Google Scholar

  • Dabert M., Dastych H., Dabert J. (2015) Molecular data support the dispersal ability of the glacier tardigrade Hypsibius klebelsbergi Mihelčič, 1959 across the environmental barrier (Tardigrada). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 17: 233-240.Google Scholar

  • Dastych H., Kraus H.J., Thaler K. (2003) Redescription and notes on the biology of the glacier tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from Ötztal Alps, Austria. Mitteilungen aus dem Zoologischen Museum Hamburg 100: 73-100.Google Scholar

  • De Smet W.H., Van Rompu E.A. (1994) Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belgian Journal of Zoology 124: 27-37.Google Scholar

  • Doran P.T., Lyons W.B., McKnight D.M. (2010) Life in Antarctic Deserts and other Cold Dry Environments.Google Scholar

  • Dudeja S., Bhattacherjee A.B., Chela-Flores J. (2012) Antarctica as model for the possible emergence of life on Europa. Life on Earth and Other Planetary Bodies. COLE Habitats and Astrobiology 24: 407-419.Google Scholar

  • Edwards A., Pachebat J.A., Swain M., et al. (2013) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters 8: 1-11.CrossrefGoogle Scholar

  • Erdmann W., Kaczmarek Ł. (2016) Tardigrade in space researches-past and future. Origins of Life and Evolution of Biospheres. doi:10.1007/s11084-016-9522-1CrossrefGoogle Scholar

  • Feller G., Gerday C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology 1: 200-208.Google Scholar

  • Fishbaugh K. E., Head J. W. (2000) North polar region of Mars: Topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. Journal of Geophysical Research Atmospheres 105: 22455-22486.CrossrefGoogle Scholar

  • Fontaneto D., Bunnefeld N., Westberg M. (2012) Long-Term Survival of Microscopic Animals Under Desiccation Is Not So Long. Astrobiology 12: 863-869.CrossrefGoogle Scholar

  • Gaubin Y., Delpoux M., Pianezzi B., et al. (1990) Investigations of the effect of cosmic rays on Artemia cysts and tobacco seeds; results of Exobloc II experiment, flown aboard Biocosmos 1887. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 17: 133-143.Google Scholar

  • Gladyshev E., Meselson M. (2008) Extreme Resistance of Bdelloid Rotifers to Ionizing Radiation. Proceedings of the National Academy of Sciences 105: 5139-5144.Google Scholar

  • Greenberg R. (2005) Europa – The Ocean Moon. Praxis Publishing, UK, XV.Google Scholar

  • Greven H., Dastych H., Kraus H.J. (2005) Notes on the integument of the glacier-dwelling tardigrade Hypsibius klebelsbergi Mihelčič, 1959 (Tardigrada). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 102: 11-20.Google Scholar

  • Grzesiak J., Górniak D., Świątecki A., et al. (2015) Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles. 19(5): 885-97.CrossrefGoogle Scholar

  • Gokul J.K., Hodson A.J., Saetnan E.R., et al. (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Molecular Ecology 25, 3752-3767.CrossrefGoogle Scholar

  • Guidetti R., Rizzo A.M., Altiero T., et al. (2012) What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration. Planetary and Space Science 74: 97-102.CrossrefGoogle Scholar

  • Hashimoto T., Horikawa D.D., Saito Y., et al. (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature Communications, 7: 12808.Google Scholar

  • Head J.W., Marchant D.R (2014) The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarctic Science 26: 774-800.CrossrefGoogle Scholar

  • Hodson A., Anesio A.M., Tranter M., et al. (2008) Glacial ecosystems. Ecological Monographs 78: 41-67.CrossrefGoogle Scholar

  • Hodson A., Cameron K., Bøggild C., et al. (2010). The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology 56: 349-362.CrossrefGoogle Scholar

  • Hodson A., Paterson H., Westwood K., Cameron K., Laybourn-Parry J. (2013). A blue-ice ecosystem on the margins of the East Antarctic ice sheet. Journal of Glaciology, 59: 255-268.Google Scholar

  • Horikawa D.D. (2012) Survival of tardigrades in extreme environments: A model animal for astrobiology. Anoxia. COLE Habitats and Astrobiology 21: 205-217. ISBN: 978-94-007-1895-1Google Scholar

  • Horneck G. (2000) The microbial world and the case for Mars. Planetary and Space Science 48: 1053-1063.CrossrefGoogle Scholar

  • Hoover R.B., Gilichinsky D. (2001) Significance to Astrobiology of Micro-Organisms in Permafrost and Ice. Permafrost Response on Economic Development, Environmental Security and Natural Resources NATO Science Series 76: 553-579.Google Scholar

  • Hugenholtz P., Goebel B.M., Pace N.R. (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180: 4765-4774.Google Scholar

  • Johnson A.P., Pratt L.M., Vishnivetskaya T., et al. (2011) Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus 211: 1162-1178.Google Scholar

  • Jönsson K.I. (2007) Tardigrades as a potential model organism in space research. Astrobiology 7: 757-766.CrossrefGoogle Scholar

  • Jönsson K.I., Rabbow E., Schill R.O., et al. (2008) Tardigrades survive exposure to space in low Earth orbit. Current Biology 18: 729-731.CrossrefGoogle Scholar

  • Kaczmarek Ł., Jakubowska N., Celewicz-Gołdyn S., et al. (2015) Cryoconite holes microorganisms (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista)- a review. Polar Record 52: 176-203. doi:10.1017/S0032247415000637CrossrefGoogle Scholar

  • Karl D.M., Bird D.F., Björkman K., et al. (1999) Microorganisms in the Accreted Ice of Lake Vostok, Antarctica. Science 286: 2144-2147.Google Scholar

  • Krisko A., Leroy M., Radman M., et al. (2011) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proceedings of the National Academy of Sciences 109: 2354-2357.Google Scholar

  • Langford H., Irvine-Fynn T., Edwards A., et al. (2014) A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. Biogeosciences 11: 5365-5380.CrossrefGoogle Scholar

  • Lutz S., Anesio A.M., Edwards A., Benning L.G. (2016) Linking microbial diversity and functionality of arctic glacial surface habitats. Environmental Microbiology, doi:10.1111/1462-2920.13494.CrossrefGoogle Scholar

  • Łokas E., Zaborska A., Kolicka M., et al. (2016) Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160: 162-172.Google Scholar

  • Marchant D.R., Head J.W (2014) Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192: 187-222.CrossrefGoogle Scholar

  • Mueller D.R., Vincent W.F., Pollard W.H., et al. (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwiga, Beiheft 123: 173-197.Google Scholar

  • Persson D., Halberg K.A., Jørgensen A., et al. (2010) Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. Journal of Zoological Systematics and Evolutionary Research 49: 90-97.CrossrefGoogle Scholar

  • Porazińska D.L., Fountain A.G., Nylen T.H., et al. (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36: 84-91.CrossrefGoogle Scholar

  • Priscu J.C., Adams E.E., Lyons W.B., et al. (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141-2144.Google Scholar

  • Rebecchi L., Cesari M., Altiero T., et al. (2009a) Survival and DNA degradation in anhydrobiotic tardigrades. Journal of Experimental Biology 212: 4033-4039.CrossrefGoogle Scholar

  • Rebecchi L., Altiero T., Guidetti R., et al. (2009b) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007) Astrobiology 9: 581-591.CrossrefGoogle Scholar

  • Remias D., Lütz-Meindl U., Lütz C. (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology 40: 259-268.CrossrefGoogle Scholar

  • Ricci C. (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiology 387/388: 321-326.Google Scholar

  • Ricci C. (2001) Dormancy patterns in rotifers. Hydrobiology 446/447: 1-11.Google Scholar

  • Ricci C., Caprioli M. (2005) Anhydrobiosis in bdelloid species, populations and individuals. Integrative and Comparative Biology 45: 759-763.CrossrefGoogle Scholar

  • Shain D.H., Halldórsdóttir K., Pálsson F., Aðalgeirsdóttir G., Gunnarsson A., Jónsson Þ., Lang S.A., Pálsson H. S., Steinþórssson S., Arnas E. (2016) Colonization of maritime glacier ice by bdelloid Rotifera. Molecular Phylogenetics and Evolution 98: 280-287.CrossrefGoogle Scholar

  • Shain D.H., Carter M.R., Murray K.P., Maleski K.A., Smith N.R., McBride T.R., Michalewicz L.A., Saidel W.M. (2000) Morphologic characterization of the ice worm Mesenchytraeus solifugus. Journal of Morphology 246: 192-197.Google Scholar

  • Sheridan P.P., Miteva V.I., Brenchley J.E. (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Applied and Environmental Microbiology 69: 2153-2160.CrossrefGoogle Scholar

  • Singh P., Singh S.M., Dhakephalkar P. (2014a) Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18: 229-242.CrossrefGoogle Scholar

  • Singh P., Hanada Y., Singh S.M., et al. (2014b) Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiology Letters 351: 14-22.Google Scholar

  • Sotin C., Tobie G. (2004) Internal structure and dynamics of the large icy satellites. Comptes Rendus Physique 5: 769-780.CrossrefGoogle Scholar

  • Tanabe Y., Kudoh S., Imura S., Fukuchi M. (2008) Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biology 31:199-208.CrossrefGoogle Scholar

  • Takeuchi N., Kohshima S.S., Seko K. (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115-122.CrossrefGoogle Scholar

  • Tranter M., Fountain A., Fritsen C., et al. (2004) Extreme hydrological conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes 18: 379-387.CrossrefGoogle Scholar

  • Uetake J., Tanaka S., Segawa T., et al. (2016) Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiology Ecology 92(9): 1-10.Google Scholar

  • Vincent W.F. (2007) Cold Tolerance in Cyanobacteria and Life in the Cryosphere. In J. Seckbach (ed.), Algae and Cyanobacteria in Extreme Environments 287-301. Springer.Google Scholar

  • Vincent W.F., Howard-Williams C. (2000) Life on snowball Earth. Science 287: 2421.Google Scholar

  • Vonnahme T.R., Devetter M., Zárský J.D., et al. (2015) Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard. Biogeosciences 13: 659-674.CrossrefGoogle Scholar

  • Wharton R.A., McKay C.P., Simmons G.M., Parker B.C. (1985) Cryoconite holes on glaciers. Bioscience 35: 499-503.CrossrefGoogle Scholar

  • Wilson L., Head J.W. (1981) Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research: Solid Earth 86: 2971-3001. DOI: 10.1029/JB086iB04p02971CrossrefGoogle Scholar

  • Wright J.C. (2001) Cryptobiosis 300 years on from van Leeuwenhoek: what have we learned about tardigrades? Zoologischer Anzeiger 240: 563-582.Google Scholar

  • Yallop M.L., Anesio A.M., Perkins R.G., et al. (2012) Photophysiology and albedo-changing potential of the ice-algal community on the surface of the Greenland ice sheet. ISME Journal 6: 2302-2313.CrossrefGoogle Scholar

  • Zawierucha K., Kolicka M., Takeuchi N., et al. (2015) What animals can live in cryoconite holes? A faunal review. Journal of Zoology 295: 159-169.Google Scholar

  • Zawierucha K., Ostrowska M., Vonnahme T.R., et al. (2016a) Diversity and distribution of Tardigrada in Arctic cryoconite holes. Journal of Limnology 75: 545-559.Google Scholar

  • Zawierucha K., Vonnahme T.R., Devetter M., et al. (2016b) Area, depth and elevation of cryoconite holes in the Arctic do not influence Tardigrada densities. Polish Polar Research 37: 325-334.CrossrefGoogle Scholar

About the article

Received: 2016-02-20

Accepted: 2017-02-15

Published Online: 2017-06-06

Published in Print: 2017-06-01


Citation Information: Contemporary Trends in Geoscience, ISSN (Online) 2299-8179, DOI: https://doi.org/10.1515/ctg-2017-0001.

Export Citation

© 2017 Faculty of Earth Sciences, University of Silesia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in