Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2017: 0.28
SCImago Journal Rank (SJR) 2017: 0.231
Source Normalized Impact per Paper (SNIP) 2017: 0.443
Mathematical Citation Quotient (MCQ) 2017: 0.12
ICV 2017: 121.78



Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 47, Issue 1

Issues

Uniformly Continuous Superposition Operators In The Space Of Functions Of Bounded n-Dimensional Φ-Variation

Mireya Bracamonte
  • Corresponding author
  • DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO BARQUISIMETO, VENEZUELA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jurancy Ereú
  • Corresponding author
  • DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO BARQUISIMETO, VENEZUELA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Giménez / Nelson Merentes
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/dema-2014-0005

Abstract

We prove that if a superposition operator maps a subset of the space of all metric-vector-space-valued-functions of bounded n-dimensional Φ-variation into another such space, and is uniformly continuous, then the generating function of the operator is an affine function in the functional variable

Keywords: superposition operator; bounded Φ -variation; metric semigroup

References

  • [1] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operator, Cambridge University Press, New York, 1990.Google Scholar

  • [2] V. V. Chistyakov, Functions of several variables of finite variation and superposition operators, in: Real Analysis Exchange 26th Summer Symposium, Lexington, VA, USA, 2002, pp. 61-66.Google Scholar

  • [3] V. V. Chistyakov, A selection principle for mappings of bounded variation of several variables, in: Real Analysis Exchange 27th Summer Symposium, Opava, Czech Republic, 2003, pp. 217-222.Google Scholar

  • [4] V. V. Chistyakov, Y. Tretyachenko, Maps of several variables of finite total variation and Helly-type selection principles, J. Math. Anal. Appl. 370(2) (2010), 672-686.Google Scholar

  • [5] J. A. Clarkson, C. R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), 824-854.CrossrefGoogle Scholar

  • [6] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York and London, 1963.Google Scholar

  • [7] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa, Kraków, Katowice, 1985.Google Scholar

  • [8] K. Lichawski, J. Matkowski, J. Mi`s, Locally defined operators in the space of differentiable functions, Bull. Polish Acad. Sci. Math. 37 (1989), 315-125.Google Scholar

  • [9] J. Matkowski, Uniformly continuous superposition operators in the space of bounded variation functions, Math. Nachr. 283(7) (2010), 1060-1064.Web of ScienceGoogle Scholar

  • [10] F. A. Talalyan, A multidimensional analogue of a theorem of F. Riesz, Sbornik: Mathematics 186(9) (1995), 1363-1374.Web of ScienceGoogle Scholar

  • [11] G. Vitali, Sui gruppi di punti e sulle funzioni di variabili reali, Atti Accad. Sci. Torino 43 (1908), 75-92.Google Scholar

  • [12] M. Wróbel, Representation theorem for local operators in the space of continuous and monotone functions, J. Math. Anal. Appl. 372 (2010), 45-54.Web of ScienceGoogle Scholar

  • [13] M. Wróbel, Locally defined operators in the Hölder spaces, Nonlinear Anal. 74 (2011), 317-323.Google Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-03-01


Citation Information: Demonstratio Mathematica, Volume 47, Issue 1, Pages 56–68, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0005.

Export Citation

© 2015 by Walter de Gruyter Berlin/Boston. This content is open access.

Comments (0)

Please log in or register to comment.
Log in