Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2017: 0.28
SCImago Journal Rank (SJR) 2017: 0.231
Source Normalized Impact per Paper (SNIP) 2017: 0.443
Mathematical Citation Quotient (MCQ) 2017: 0.12
ICV 2017: 121.78



Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 47, Issue 1

Issues

Oscillation For Certain Impulsive Partial Difference Equations

Figen Özpinar / Sermin Öztürk
  • Corresponding author
  • DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS ANS CAMPUS AFYON KOCATEPE UNIVERSITY 03200 AFYONKARAHISAR, TURKEY
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zeynep Fidan Koçak
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/dema-2014-0007

Abstract

In this paper, we obtain some sufficient criteria for the oscillation of the solutions of linear impulsive partial difference equations with continuous variables

Keywords : partial difference equation; impulsive PDEs; oscillation; continuous variables

References

  • [1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.Google Scholar

  • [2] R. P. Agarwal, F. Karakoc, Oscillation of impulsive partial difference equations with continuous variables, Math. Comput. Modelling 50 (2009), 1262-1278.Google Scholar

  • [3] R. P. Agarwal, P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic, Dordrecht, 1997.Google Scholar

  • [4] D. D. Baĭnov, M. B. Dimitrova, A. B. Dishlies, Oscillation of bounded solutions of impulsive differential-difference of second order, Appl. Math. Comput. 114 (2000), 61-68.Google Scholar

  • [5] D. D. Baĭnov, E. Minchev, Forced oscillation of solutions of impulsive nonlinear parabolic differential-difference equations, J. Korean Math. Soc. 35(4) (1998), 881-890.Google Scholar

  • [6] D. D. Baĭnov, E. Minchev, Oscillation of solutions of impulsive nonlinear parabolic differential-difference equations, Internat. J. Theoret. Phys. 35(1) (1996), 207-215.Google Scholar

  • [7] D. D. Baĭnov, P. S. Simeonov. Impulsive Differential Equations Asymtotic Properties of the Solutions, World Scientific, Singapore, 1995.Google Scholar

  • [8] B. T. Cui, Y. Liu, Oscillatory for partial difference equations with continuous variables, J. Comput. Appl. Math. 154 (2003), 373-391.Google Scholar

  • [9] V. Lakshmikantham, D. D. Ba˘ınov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1998.Google Scholar

  • [10] E. Minchev, Oscillation of solutions of impulsive nonlinear hyperbolic differential- difference equations, Math. Balcanica 12(1-2) (1998), 215-224.Google Scholar

  • [11] B. G. Zhang, Oscillation criteria of partial difference equations with continuous variables, Acta Math. Sinica 42(3) (1999), 487-494, (in Chinese).Google Scholar

  • [12] B. G. Zhang, B. M. Liu, Oscillation criteria of certain nonlinear partial difference equations, Comput. Math. Appl. 38 (1999), 107-112.CrossrefGoogle Scholar

  • [13] B. G. Zhang, B. M. Liu, Necessary and sufficient conditions for oscillation of partial difference equations with continuous variables, Comput. Math. Appl. 38 (1999), 163-167.CrossrefGoogle Scholar

  • [14] B. G. Zhang, Y. Zhou, Qualitative Analysis of Delay Partial Difference Equations, Hindawi Publishing Corporation, New York, 2007.Google Scholar

  • [15] Y. Zhou, Existence of bounded and unbounded nonoscillatory solutions of nonlinear partial difference equations, J. Math. Anal. Appl. 332(2) (2007), 1267-1277. Web of ScienceGoogle Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-03-01


Citation Information: Demonstratio Mathematica, Volume 47, Issue 1, Pages 79–102, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0007.

Export Citation

© 2015 by Walter de Gruyter Berlin/Boston. This content is open access.

Comments (0)

Please log in or register to comment.
Log in