Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2018: 121.16

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 47, Issue 1

Issues

Fixed Points Of F-Weak Contractions On Complete Metric Spaces

D. Wardowski
  • Corresponding author
  • UNIVERSITY OF ŁÓDZ FACULTY OF MATHEMATICS AND COMPUTER SCIENCE DEPARTMENT OF NONLINEAR ANALYSIS Banacha 22 90-238 ŁÓDZ, POLAND
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. Van Dung
  • Corresponding author
  • DONG THAP UNIVERSITY DEPARTMENT OF MATHEMATICS 783 Pham Huu Lau Street WARD 6, CAO LANH CITY DONG THAP PROVINCE, VIETNAM, POSTAL CODE: 84
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/dema-2014-0012

Abstract

In this paper, we introduce the notion of an F-weak contraction and prove a fixed point theorem for F-weak contractions. Examples are given to show that our result is a proper extension of some results known in the literature

Keywords: F-contraction; F-weak contraction; fixed point theorem; complete metric space

References

  • [1] M. A. Alghamdi, A. Petrusel, N. Shahzad, A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl. 122 (2012), 10 pages.Google Scholar

  • [2] T. V. An, K. P. Chi, E. Karapinar, T. D. Thanh, An extension of generalized p ; 'q-weak contractions, Int. J. Math. Math. Sci. 2012 (2012), 11 pages.Google Scholar

  • [3] V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 105 (2012), 16 pages.CrossrefGoogle Scholar

  • [4] R. M. T. Bianchini, Su un problema di S. Reich aguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108.Google Scholar

  • [5] L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math.Soc. 45 (1974), 267-273.CrossrefGoogle Scholar

  • [6] H.-S. Ding, L. Li, S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 96 (2012), 17 pages.Google Scholar

  • [7] W. S. Du, S. X. Zheng, Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese J. Math. 16(3) (2012), 857-868.Google Scholar

  • [8] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad.Math. Bull. 16(2) (1973), 201-206.Google Scholar

  • [9] A. Latif, W. A. Albar, Fixed point results in complete metric spaces, Demonstratio Math. 41 (2008), 145-150.Web of ScienceGoogle Scholar

  • [10] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14(1) (1971), 121-124.Google Scholar

  • [11] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012), 11 pages. Google Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-03-01


Citation Information: Demonstratio Mathematica, Volume 47, Issue 1, Pages 146–155, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0012.

Export Citation

© 2015 by Walter de Gruyter Berlin/Boston. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mohamed Abdalla Darwish, Mohamed Jleli, Donal O’Regan, and Bessem Samet
Mathematics, 2019, Volume 7, Number 12, Page 1240
[2]
Hüseyin Işık, Vahid Parvaneh, Babak Mohammadi, and Ishak Altun
Mathematics, 2019, Volume 7, Number 11, Page 1130
[3]
Sudesh Kumari, Renu Chugh, Jinde Cao, and Chuangxia Huang
Mathematics, 2019, Volume 7, Number 10, Page 967
[4]
Nilakshi Goswami, Nehjamang Haokip, and Vishnu Narayan Mishra
Fixed Point Theory and Applications, 2019, Volume 2019, Number 1
[5]
Lakshmi Kanta Dey, Poom Kumam, and Tanusri Senapati
Applied General Topology, 2019, Volume 20, Number 1, Page 81
[6]
Muhammad Shoaib, Muhammad Sarwar, and Thabet Abdeljawad
Journal of Function Spaces, 2019, Volume 2019, Page 1
[7]
Özlem ACAR
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 2018, Volume 68, Number 1, Page 35
[9]
Panda Sumati Kumari, Obaid Alqahtani, and Erdal Karapınar
Symmetry, 2018, Volume 10, Number 12, Page 691

Comments (0)

Please log in or register to comment.
Log in