## Abstract

In this paper, we introduce the notion of an F-weak contraction and prove a fixed point theorem for F-weak contractions. Examples are given to show that our result is a proper extension of some results known in the literature

Show Summary Details# Fixed Points Of F-Weak Contractions On Complete Metric Spaces

#### Open Access

## Abstract

## References

## About the article

## Citing Articles

*Mathematics*, 2019, Volume 7, Number 12, Page 1240*Mathematics*, 2019, Volume 7, Number 11, Page 1130*Mathematics*, 2019, Volume 7, Number 10, Page 967*Fixed Point Theory and Applications*, 2019, Volume 2019, Number 1*Applied General Topology*, 2019, Volume 20, Number 1, Page 81*Journal of Function Spaces*, 2019, Volume 2019, Page 1*Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics*, 2018, Volume 68, Number 1, Page 35*The Journal of Analysis*, 2019*Symmetry*, 2018, Volume 10, Number 12, Page 691

More options …# Demonstratio Mathematica

More options …

Editor-in-Chief: Vetro, Calogero

Covered by:

Web of Science - Emerging Sources Citation Index

Scopus

MathSciNet

CiteScore 2018: 0.47

SCImago Journal Rank (SJR) 2018: 0.265

Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2018: 121.16

In this paper, we introduce the notion of an F-weak contraction and prove a fixed point theorem for F-weak contractions. Examples are given to show that our result is a proper extension of some results known in the literature

Keywords: F-contraction; F-weak contraction; fixed point theorem; complete metric space

[1] M. A. Alghamdi, A. Petrusel, N. Shahzad, A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl. 122 (2012), 10 pages.Google Scholar

[2] T. V. An, K. P. Chi, E. Karapinar, T. D. Thanh, An extension of generalized p ; 'q-weak contractions, Int. J. Math. Math. Sci. 2012 (2012), 11 pages.Google Scholar

[3] V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 105 (2012), 16 pages.CrossrefGoogle Scholar

[4] R. M. T. Bianchini, Su un problema di S. Reich aguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108.Google Scholar

[5] L. B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math.Soc. 45 (1974), 267-273.CrossrefGoogle Scholar

[6] H.-S. Ding, L. Li, S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 96 (2012), 17 pages.Google Scholar

[7] W. S. Du, S. X. Zheng, Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese J. Math. 16(3) (2012), 857-868.Google Scholar

[8] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad.Math. Bull. 16(2) (1973), 201-206.Google Scholar

[9] A. Latif, W. A. Albar, Fixed point results in complete metric spaces, Demonstratio Math. 41 (2008), 145-150.Web of ScienceGoogle Scholar

[10] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14(1) (1971), 121-124.Google Scholar

[11] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012), 11 pages. Google Scholar

**Published Online**: 2014-03-07

**Published in Print**: 2014-03-01

**Citation Information: **Demonstratio Mathematica, Volume 47, Issue 1, Pages 146–155, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0012.

© 2015 by Walter de Gruyter Berlin/Boston. This content is open access.

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Mohamed Abdalla Darwish, Mohamed Jleli, Donal O’Regan, and Bessem Samet

DOI: 10.3390/math7121240

[2]

Hüseyin Işık, Vahid Parvaneh, Babak Mohammadi, and Ishak Altun

DOI: 10.3390/math7111130

[3]

Sudesh Kumari, Renu Chugh, Jinde Cao, and Chuangxia Huang

DOI: 10.3390/math7100967

[4]

Nilakshi Goswami, Nehjamang Haokip, and Vishnu Narayan Mishra

[5]

Lakshmi Kanta Dey, Poom Kumam, and Tanusri Senapati

[6]

Muhammad Shoaib, Muhammad Sarwar, and Thabet Abdeljawad

DOI: 10.1155/2019/6870308

[7]

Özlem ACAR

[8]

S. Muralisankar and A. Santhi

[9]

Panda Sumati Kumari, Obaid Alqahtani, and Erdal Karapınar

DOI: 10.3390/sym10120691

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.