Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


CiteScore 2017: 0.28

SCImago Journal Rank (SJR) 2017: 0.231
Source Normalized Impact per Paper (SNIP) 2017: 0.443

Mathematical Citation Quotient (MCQ) 2017: 0.12

ICV 2017: 121.78

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 47, Issue 1

Issues

The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

Jae Won Lee
  • Corresponding author
  • DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI 202 MATH. SCI. BLDG., COLUMBIA MO 65211, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jin Ho Choi / Dae Ho Jin
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/dema-2014-0013

Abstract

In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

Keywords : dual curves; slant helix; dual slant helix; dual curvature and torsion

References

  • [1] A. T. Ali, Position vectors of slant helices in Euclidean space E3, arXiv : 0907:0750v1 [math.DG], 4 Jul 2009.Google Scholar

  • [2] J. H. Choi, Y. H. Kim, Some associated curves of a Frenet curve and its applications, preprint p2010q.Google Scholar

  • [3] M. A. Gungor, M. Tosun, A study on dual Mannheim partner curves, Int. Math. Forum 5(47) (2010), 2319-2330.Google Scholar

  • [4] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 531-537.Google Scholar

  • [5] J. W. Lee, J. H. Choi, D. H. Jin, Slant dual Mannheim partner curves in the dual space D3, Int. J. Contemp. Math. Sciences 6(3) (2011), 1535-1544.Google Scholar

  • [6] Ö. Köse, S. Nizamoglu, M. Sezer, An explicit characterization of dual spherical curves, Doga Mat. 12(3) (1988), 105-113.Google Scholar

  • [7] S. Özkaldi, K. Ilarslan, Y. Yayli, On Mannheim partner curve in dual space, An. St.Univ. Ovidius Constanta 17(2) (2009), 131-142.Google Scholar

  • [8] A. Yücesan, N. Ayyıldız, A. C. Çöken, On rectifying dual space curves, Rev. Mat.Complut. 20(2) (2007), 497-506. Google Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2014-03-01


Citation Information: Demonstratio Mathematica, Volume 47, Issue 1, Pages 156–169, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0013.

Export Citation

© 2015 by Walter de Gruyter Berlin/Boston. This content is open access.

Comments (0)

Please log in or register to comment.
Log in