[1] P. Erdos, On a theorem of Hsu and Robbins, Acta. Math. Statist. 20 (1949), 286-291.Google Scholar

[2] L. E. Baum, M. Katz, Convergence rates in the law of large numbers, Trans. Amer.Math. Soc. 120 (1965), 108-123.Google Scholar

[3] A. Gut, Complete convergence. Asymptotics statistics. Proceedings of the Fifth Prague Symposium, Physica Verlag held September 4-9, 1993, (1994), 237-247.Google Scholar

[4] A. Gut, Complete convergence and convergence rates for randomly indexed partial sums with an application to some first passage times, Acta Math. Acad. Sci. Hungar. 42 (1983), 225-232; Correction, ibid. 45 (1985), 235-236.Google Scholar

[5] A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, The Annals of Probab. 6(3) (1978), 469-482.Google Scholar

[6] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186.Google Scholar

[7] P. L. Hsu, H. Robbins, Complete conevergence and the law of large numbers, Proc.Nat. Acad. Sci. USA 33 (1947), 25-31.CrossrefGoogle Scholar

[8] T.-C. Hu, M. O. Cabrera, S. H. Sung, A. Volodin, Complete convergence for arrays of rowwise independent random variables, Commun. Korean Math. Soc. 18 (2003), 375-383.Google Scholar

[9] T.-C. Hu, F. Móricz, R. L. Taylor, Strong laws of large numbers for arrays of rowwise independent random variables, Acta Math. Hung. 54(1-2) (1989), 153-162.Google Scholar

[10] T.-C. Hu, D. Szynal, A. I. Volodin, A note on complete convergence for arrays, Statist.Probab. Lett. 38 (1998), 27-31.Google Scholar

[11] M. Ledoux, M. Talagrand, Probability in Banach Space, Springer, 1991.Google Scholar

[12] H. P. Rosenthal, On the subspaces of Lp pp ¡ 2q spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.Google Scholar

[13] R. T. Smythe, Sums of independent random variables on partially ordered sets, Ann.Probability 2 (1974), 906-917.Google Scholar

[14] S. H. Sung, Complete convergence for weighted sum of random variables, Statist.Probab. Lett. 77 (2007), 303-311.Google Scholar

[15] S. H. Sung, A. I. Volodin, T.-C. Hu, More on complete convergence for arrays, Statist.Probab. Lett. 71 (2005), 303-311.Google Scholar

[16] L. V. Thahn, G. Yin, Almost sure and complete convergence of randomly weighted sums of independent random elements in Banach spaces, Taiwanese Journal of Mathematics 15 (2011), 1759-1781.Web of ScienceGoogle Scholar

[17] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions with an account of the principal trnscendental functions, Cambridge University Press, Fourth Edition reprinted 2002. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.