Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero

Covered by:
Web of Science - Emerging Sources Citation Index

CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2018: 121.16

Open Access
See all formats and pricing
More options …
Volume 47, Issue 2


On A System of Rational Difference Equation

Qamar Din
Published Online: 2014-06-06 | DOI: https://doi.org/10.2478/dema-2014-0026


In this paper, we study local asymptotic stability, global character and periodic nature of solutions of the system of rational difference equations given by xn+1= , yn=, n=0, 1,…, where the parameters a; b; c; d; e; f ∊ (0; ∞), and with initial conditions x0; y0 ∊ (0; ∞). Some numerical examples are given to illustrate our results.

Keywords: difference equation; equilibrium points; stability. This work is supported by HEC of Pakistan


  • [1] C. Cinar, On the positive solutions of the difference equation system xn1 _ 1 yn ;yn1 _ynxn_1yn_1 , Appl. Math. Comput. 158 (2004), 303-305.Google Scholar

  • [2] S. Stevic, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), 5010-5018.Web of ScienceGoogle Scholar

  • [3] S. Stevic, On a third-order system of difference equations Appl. Math. Comput. 218 (2012), 7649-7654.Web of ScienceGoogle Scholar

  • [4] I. Bajo, E. Liz, Global behaviour of a second-order nonlinear difference equation, J.Difference Equ. Appl. 17(10) (2011), 1471-1486.Google Scholar

  • [5] S. Kalabuˆsic, M. R. S. Kulenovic, E. Pilav, Dynamics of a two-dimensional system of rational difference equations of Leslie-Gower type, Adv. Differential Equations (2011). doi:10.1186/1687-1847-2011-29CrossrefGoogle Scholar

  • [6] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations xn1 _xn_1 ynxn_1_1 ; yn1 _ yn_1xnyn_1_1 ; zn1 _ 1 ynzn , Discrete Dyn. Nat. Soc. 2011, ID: 932362, 12 pages.Google Scholar

  • [7] A. S. Kurbanli, C. Çinar, I. Yalçinkaya, On the behavior of positive solutions of the system of rational difference equations xn1 _xn_1 ynxn_11 , yn1 _ yn_1xnyn_11 , Math.Comput. Modelling 53 (2011), 1261-1267.Google Scholar

  • [8] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the solutions of a class of difference equations systems, Demonstratio Math. 41(1) (2008), 109-122.Google Scholar

  • [9] N. Touafek, E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling 55 (2012), 1987-1997.Google Scholar

  • [10] N. Touafek, E. M. Elsayed, On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roumanie 2 (2012), 217-224. Google Scholar

About the article

Received: 2012-04-03

Published Online: 2014-06-06

Published in Print: 2014-06-01

Citation Information: Demonstratio Mathematica, Volume 47, Issue 2, Pages 324–335, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0026.

Export Citation

© by Qamar Din. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qamar Din and Tzanko Donchev
Chaos, Solitons & Fractals, 2013, Volume 54, Page 1
Mohammed Almatrafi, E. M. Elsayed, and Faris Alzahrani
Fundamental Journal of Mathematics and Applications, 2018, Volume 1, Number 2, Page 194
Qamar Din
Advances in Difference Equations, 2013, Volume 2013, Number 1

Comments (0)

Please log in or register to comment.
Log in