[1] J. Alaminos, M. Mathieu, A. Villena, Symmetric amenability and Lie derivations, Math. Proc. Cambridge Philos. Soc. 137 (2004), 433-439.Google Scholar

[2] R. An, J. Hou, Characterization of derivations on triangular rings: additive maps derivable at idempotents, Linear Algebra Appl. 431 (2009), 1070-1080.Google Scholar

[3] R. An, J. Hou, Characterizations of Jordan derivations on rings with idempotent, Linear Multilinear Algebra 58 (2010), 753-763.Google Scholar

[4] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 9-21.Google Scholar

[5] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.CrossrefGoogle Scholar

[6] W. Cheung, Lie derivations of triangular algebra, Linear Multilinear Algebra 51 (2003), 299-310.CrossrefGoogle Scholar

[7] K. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1988.Google Scholar

[8] I. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.Google Scholar

[9] J. Hou, R. An, Additive maps on rings behaving like derivations at idempotent-product elements, J. Pure Appl. Algebra. 215 (2011), 1852-1862.Web of ScienceGoogle Scholar

[10] J. Hou, X. Qi, Additive maps derivable at some points on J -subspace lattice algebras, Linear Algebra Appl. 429 (2008), 1851-1863.Google Scholar

[11] M. Jiao, J. Hou, Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Algebra Appl. 432 (2010), 2984-2994.Google Scholar

[12] B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455-473.Google Scholar

[13] J. Li, Z. Pan, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl. 432 (2010), 5-13.Google Scholar

[14] J. Li, Z. Pan, On derivable mappings, J. Math. Anal. Appl. 374 (2011), 311-322.Google Scholar

[15] J. Li, Z. Pan, H. Xu, Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl. 332 (2007), 1314-1322.Google Scholar

[16] F. Lu, J. Wu, Characterizations of Lie derivations of BpXq, Linear Algebra Appl. 432 (2010), 89-99.Google Scholar

[17] F. Lu, Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl. 430 (2009), 2233-2239.Google Scholar

[18] F. Lu, The Jordan structure of CSL algebras, Studia Math. 190 (2009), 283-299.Google Scholar

[19] X. Qi, J. Hou, Characterizations of derivations of Banach space nest algebras: allderivable point, Linear Algebra Appl. 432 (2010), 3183-3200.Google Scholar

[20] A. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.CrossrefGoogle Scholar

[21] J. Vukman, On pm; nq-Jordan derivation and commutativity of prime rings, Demonstratio Math. 41 (2008), 773-778.Google Scholar

[22] J. Zhang, W. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), 251-255.Google Scholar

[23] S. Zhao, J. Zhu, Jordan all-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 433 (2010), 1922-1938.Google Scholar

[24] J. Zhu, C. Xiong, All-derivable points in continuous nest algebras, J. Math. Anal. Appl. 340 (2008), 843-853.Google Scholar

[25] J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl. 422 (2007), 721-735.Google Scholar

[26] J. Zhu, C. Xiong, R. Zhang, All-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 429(4) (2008), 804-818. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.