Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero

Covered by:
Web of Science - Emerging Sources Citation Index

CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2018: 121.16

Open Access
See all formats and pricing
More options …
Volume 47, Issue 3


Coincidence and Fixed Point for Weakly Reciprocally Continuous Single-Valued and Multi-Valued Maps

Ajay Gairola / Jay Singh / Mahesh C. Joshi
Published Online: 2014-09-02 | DOI: https://doi.org/10.2478/dema-2014-0056


In the present paper, we extend the concept ofWeak Reciprocal Continuity for a hybrid pair of single-valued and multi-valued maps and introduce (T; f)-completeness of the space. Further, we establish some results on the existence of coincidence and fixed points for the hybrid pair of maps. Our results generalize several well known results available in the literature

Keywords: and phrases: reciprocally continuous; weakly reciprocally continuous; compatible maps; R-weak commutativity of type Af


  • [1] N. Al-Thagafi, N. Shahzad, Generalized I-nonexapansive self maps and invariant approximations, Acta. Math. Sinica 24 (2008), 867-876.Google Scholar

  • [2] M. Chandra, S. N. Mishra, S. L. Singh, B. E. Rhoades, Coincidence and fixed points of nonexapansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math. 26(5) (1995), 393-401.Google Scholar

  • [3] Lj. B. Ciric, On some nonexpansive type mappings and fixed points, Indian J. Pure Appl. Math. 24 (1993), 145-149.Google Scholar

  • [4] G. Jungck, Compatible mappings and common fixed point, Int. J. Math. Math. Sci. 9(4) (1986), 771-779.CrossrefGoogle Scholar

  • [5] T. Kamran, Fixed points of asymptotically regular noncompatible maps, Demonstrato Math. 38(2) (2005), 485-494.Google Scholar

  • [6] H. Kaneko, A common fixed point of weakly commuting multivalued mappings, Math. Japon. 33(5) (1988), 741-744.Google Scholar

  • [7] H. Kaneko, S. Sessa, Fixed point for compatible multivalued and single-valued mappings, Int. J. Math. Math. Sci. 12(2) (1989), 257-262.CrossrefGoogle Scholar

  • [8] R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. 226 (1998), 251-258.Google Scholar

  • [9] R. P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.Google Scholar

  • [10] R. P. Pant, R. K. Bisht, D. Arora, Weak reciprocal continuity and fixed points theorems, Ann. Univ. Ferrara 57 (2011), 181-190.Google Scholar

  • [11] H. K. Pathak, Y. J. Cho, S. M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247-257.Google Scholar

  • [12] B. E. Rhoades, Comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 226 (1977).Google Scholar

  • [13] B. E. Rhoades, S. L. Singh, C. Kulshrestha, Coincidence theorem for some multivalued mappings, Int. J. Math. Math. Sci. 7 (1984), 429-434.CrossrefGoogle Scholar

  • [14] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. 32 (1982), 129-153.Google Scholar

  • [15] N. Shahzad, T. Kamran, Coincidence points and R-weakly commuting maps, Arch. Math. (Brno) 37 (2001), 179-183.Google Scholar

  • [16] S. L. Singh, S. N. Mishra, Coincidence and fixed points of non-self hybrid contraction, J. Math. Anal. Appl. 256 (2001), 486-497.Google Scholar

  • [17] S. L. Singh, S. N. Mishra, Coincidence and fixed points of reciprocally continuous and compatible hybrid maps, Int. J. Math. Math. Sci. 30(10) (2002), 627-635 Google Scholar

About the article

Received: 2012-09-27

Revised: 2013-02-04

Published Online: 2014-09-02

Published in Print: 2014-07-01

Citation Information: Demonstratio Mathematica, Volume 47, Issue 3, Pages 704–713, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0056.

Export Citation

© by Ajay Gairola. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in