Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2017: 0.12

ICV 2017: 121.78

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 47, Issue 4

Issues

On Derivations of Operator Algebras with Involution

Nejc Širovnik
  • DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FNM UNIVERSITY OF MARIBOR Koroška Cesta 160 2000 MARIBOR, SLOVENIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joso Vukman
Published Online: 2014-12-11 | DOI: https://doi.org/10.2478/dema-2014-0063

Abstract

The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L(X) be an algebra of all bounded linear operators on X and let A(X) ⊂ L(X) be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D : A(X) → L(X) satisfying the relation 2D(AA*A) = D(AA*)A + AA*D(A) + D(A)A*A + AD(A*A) for all A ∈ A(X). In this case, D is of the form D(A) = [A,B] for all A ∈ A(X) and some fixed B ∈ L(X), which means that D is a derivation.

Keywords: and phrases ring; *-ring; prime ring; semiprime ring; Banach space; Hilbert space; standard operator algebra; derivation; Jordan derivation.

References

  • [1] K. I. Beidar, M. Brešar, M. A. Chebotar, W. S. Martindale 3rd, On Herstein’s Lie map Conjectures II, J. Algebra 238 (2001), 239-264.Google Scholar

  • [2] M. Brešar, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.Google Scholar

  • [3] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.CrossrefGoogle Scholar

  • [4] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.Google Scholar

  • [5] M. Brešar, J. Vukman, Jordan (θ,ϕ)-derivations, Glas. Mat. 28 (1991), 83-88.Google Scholar

  • [6] P. R. Chernoff, Representations, automorphisms and derivations of some Operator Algebras, J. Funct. Anal. 2 (1973), 275-289.Google Scholar

  • [7] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.Google Scholar

  • [8] H. G. Dales, Automatic continuity, Bull. London Math. Soc. 10 (1978), 129-183.Google Scholar

  • [9] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1119.Google Scholar

  • [10] I. Kosi-Ulbl, J. Vukman, On some equations related to derivations in rings, Int. J. Math. Math. Sci. (2005), 2703-2710.Google Scholar

  • [11] I. Kosi-Ulbl, J. Vukman, On derivations in rings with involution, Int. Math. J. 6 (2005), 81-91.Google Scholar

  • [12] I. Kosi-Ulbl, J. Vukman, An identity related to derivations of standard operator algebras and semisimple H_-algebras, Cubo: A Mathematical Journal, 12 (2010), 95-103.Google Scholar

  • [13] L. Molnár, On centralizers of an H_-algebra, Publ. Math. Debrecen 46(1-2) (1995), 89-95.Google Scholar

  • [14] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge University Press, Cambridge, London, New York and Melbourne, 1976.Google Scholar

  • [15] P. Šemrl, Ring derivations on standard operator algebras, J. Funct. Anal. 112 (1993), 318-324.Google Scholar

  • [16] J. Vukman, On automorphisms and derivations of operator algebras, Glas. Mat. 19 (1984), 135-138.Google Scholar

  • [17] J. Vukman, On derivations of algebras with involution, Acta Math. Hungar. 112(3) (2006), 181-186.Google Scholar

  • [18] J. Vukman, On derivations of standard operator algebras and semisimple H*-algebras, Studia Sci. Math. Hungar. 44 (2007), 57-63.Google Scholar

  • [19] J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math. 11 (2007), 255-265.Google Scholar

  • [20] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glas. Mat. 46 (2011), 43-48. Google Scholar

About the article

Received: 2013-03-01

Published Online: 2014-12-11

Published in Print: 2014-12-01


Citation Information: Demonstratio Mathematica, Volume 47, Issue 4, Pages 784–790, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0063.

Export Citation

© by Nejc Širovnik. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in