[1] R. Castillo, An application of the generalized Maligranda-Orlicz’s lemma, J.I.P.A.M. 9(3) (2008), 1-6.Google Scholar

[2] M. C. Chakrabarty, Some results on !-derivatives and BV-! functions, J. Austral. Math. Soc. 9 (1967), 345-360.Google Scholar

[3] M. C. Chakrabarty, Some results on AC-! functions, Fund. Math. 64 (1969), 219-230.Google Scholar

[4] V. V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6(2) (2000), 173-186.Google Scholar

[5] R. L. Jeffery, Generalized integrals with respect to bounded variation, Canad. J. Math. 10 (1958), 617-628.Google Scholar

[6] T. Kostrzewski, Globally Lipschitzian operators of substitution in Banach space BCra; bs, Sci. Bull. of Łódz Tech. Univer. 602 (1993), 17-25.Google Scholar

[7] T. Kostrzewski, Existence uniqueness of BCra; bs solutions of nonlinear functional equation, Demonstratio Math. 26 (1993), 61-74.Google Scholar

[8] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa-Kraków-Katowice, 1985.Google Scholar

[9] J. Matkowski, Functional equation and Nemytskij operators, Funkcial. Ekvac. 25 (1982), 127-132.Google Scholar

[10] J. Matkowski, J. Mis, On a characterization of Lipschitzian operators of substitution in the space BV ra; bs, Math. Nachr. 117 (1984), 155-159.Google Scholar

[11] J. Matkowski, N. Merentes, Characterization of globally Lipschitzian composition in the Banach space BV 2 p ra; bs, Arch. Math. 28 (1992), 181-186.Google Scholar

[12] N. Merentes, K. Nikodem, On Nemytskij operator and set-valued functions of bounded p-variation, Rad. Math. 8 (1992), 139-145.Google Scholar

[13] N. Merentes, S. Rivas, On Nemytskij operator in the space of set-valued functions of bounded p-variation in the sense of Riesz, Publ. Math. Debrecen 47(1-2) (1995), 15-27.Google Scholar

[14] N. Merentes, On functions of bounded pp; 2q-variation, Collect. Math. 42(2) (1992), 117-123.Google Scholar

[15] De la Vallée Poussin, Sur la convergence des formules d’interpolation entre ordenées equiditantes, Bull. Acad. Sci. Belg. (1908), 314-410.Google Scholar

[16] F. Riesz, B. Sz. Nagy, Functional Analysis, Ungar, New York, 1955.Google Scholar

[17] F. Riesz, Untersuchugen über systeme integrierbarer funktionen, Math. Ann. 69 (1910), 449-497.Google Scholar

[18] A. M. Russell, Functions of bounded second variation and Stieltjes-type integrals, J. London Math. Soc. 2(2) (1970), 193-203.Google Scholar

[19] A. Smajdor, W. Smajdor, Jensen equation and Nemytskij operator for set-valued functions, Rad. Math. 5 (1989), 311-319.Google Scholar

[20] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Rad. Math. 6 (1990), 179-193. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.