Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


CiteScore 2017: 0.28

SCImago Journal Rank (SJR) 2017: 0.231
Source Normalized Impact per Paper (SNIP) 2017: 0.443

Mathematical Citation Quotient (MCQ) 2017: 0.12

ICV 2017: 121.78

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 47, Issue 4

Issues

Hybrid Fixed Point Theorems in Symmetric Spaces via Common Limit Range Property

Mohammad Imdad / Sunny Chauhan / Ahmed H. Soliman / M. A. Ahmed
Published Online: 2014-12-11 | DOI: https://doi.org/10.2478/dema-2014-0075

Abstract

In this paper, we point out that some recent results of Vijaywar et al. (Coincidence and common fixed point theorems for hybrid contractions in symmetric spaces, Demonstratio Math. 45 (2012), 611-620) are not true in their present form. With a view to prove corrected and improved versions of such results, we introduce the notion of common limit range property for a hybrid pair of mappings and utilize the same to obtain some coincidence and fixed point results for mappings defined on an arbitrary set with values in symmetric (semi-metric) spaces. Our results improve, generalize and extend some results of the existing literature especially due to Imdad et al., Javid and Imdad, Vijaywar et al. and some others. Some illustrative examples to highlight the realized improvements are also furnished.

Keywords: and phrases symmetric space; multi-valued mappings; quasi-coincidentally commuting mappings; common limit range property; coincidence point; common fixed point

References

  • [1] M. Aamri, D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270(1) (2002), 181-188. MR1911759 (2003d:54057)Google Scholar

  • [2] M. Aamri, D. El. Moutawakil, Common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-notes 3 (2003), 156-162.Google Scholar

  • [3] J. Ali, M. Imdad, Common fixed points of nonlinear hybrid mappings under strict contractions in semi-metric spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), 830-837.Web of ScienceGoogle Scholar

  • [4] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322(2) (2006), 796-802. MR2250617 (2007c:47066)Google Scholar

  • [5] D. K. Burke, Cauchy sequences in semi-metric spaces, Proc. Amer. Math. Soc. 33 (1972), 161-164.CrossrefGoogle Scholar

  • [6] S. H. Cho, G. Y. Lee, J. S. Bae, On coincidence and fixed-point theorems in symmetric spaces, Fixed Point Theory Appl., Article ID 562130, 9 pages, 2008.Google Scholar

  • [7] F. Galvin, S. D. Shore, Completeness in semi-metric spaces, Pacific. J. Math. 113(1) (1984), 67-75.Google Scholar

  • [8] D. Gopal, M. Hasan, M. Imdad, Absorbing pairs facilitating common fixed point theorems for Lipschitzian type mappings in symmetric space, Commun. Korean Math. Soc. 27(2) (2012), 385-397.Google Scholar

  • [9] D. Gopal, M. Imdad, C. Vetro, Common fixed point theorems for mappings satisfying common property (E.A.) in symmetric spaces, Filomat 25(2) (2011), 59-78.Web of ScienceGoogle Scholar

  • [10] T. L. Hicks, B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Anal. 36 (1999), 331-344.Google Scholar

  • [11] M. Imdad, A. Ahmad, S. Kumar, On nonlinear non-self hybrid contractions, Rad. Mat. 10(2) (2001), 243-254.Google Scholar

  • [12] M. Imdad, J. Ali, Common fixed point theorems in symmetric spaces employing a new implicit function and common property (E.A), Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 421-433.Google Scholar

  • [13] M. Imdad, J. Ali, Jungck’s common fixed point theorem and E.A property, Acta Math. Sinica (English Ser.) 24(1) (2008), 87-94.CrossrefWeb of ScienceGoogle Scholar

  • [14] M. Imdad, J. Ali, L. Khan, Coincidence and fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl. 320 (2006), 352-360.Google Scholar

  • [15] M. Imdad, A. H. Soliman, Some common fixed point theorems for a pair of tangential mappings in symmetric spaces, Appl. Math. Lett. 23(4) (2010), 351-355.Web of ScienceCrossrefGoogle Scholar

  • [16] S. Itoh, W. Takahashi, Single-valued mappings, multivalued mappings and fixed-point theorems, J. Math. Anal. Appl. 59(3) (1977), 514-521. MR0454752 (56 #13000)Google Scholar

  • [17] J. Jachymski, J. Matkowski, T. Swiatkowski, Nonlinear contractions on semimetric spaces, J. Appl. Anal. 1(2) (1995), 125-134. MR1395268Google Scholar

  • [18] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986), 771-779. MR0870534 (87m:54122)Google Scholar

  • [19] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4(2) (1996), 199-215.Google Scholar

  • [20] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299(1) (2004), 235-241. MR2091284 (2005e:54042)Google Scholar

  • [21] H. Kaneko, S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. Math. Math. Sci. 12(2) (1989), 257-262. MR0994907 (90i:54097)Google Scholar

  • [22] E. Karapınar, D. K. Patel, M. Imdad, D. Gopal, Some nonunique common fixed point theorems in symmetric spaces through CLRST property, Int. J. Math. Math. Sci. Article ID 753965, 8 pages, 2013. DOI: 10.1155/2013/753965Google Scholar

  • [23] D. Miheµ, A note on a paper of Hicks and Rhoades, Nonlinear Anal. 65 (2006), 1411-1413.Google Scholar

  • [24] D. El Moutawakil, A fixed point theorem for multivalued maps in symmetric spaces, Appl. Math. E-Notes 4 (2004), 26-32.Google Scholar

  • [25] S. B. Jr. Nadler, Multivalued contraction mappings, Pacific J. Math. 20(2) (1969), 457-488.Google Scholar

  • [26] R. P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.Google Scholar

  • [27] R. P. Pant, V. Pant, Common fixed points under strict contractive conditions, J. Math. Anal. Appl. 248 (2000), 327-332. Google Scholar

  • [28] H. K. Pathak, Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hungar. 67(1-2) (1995), 69-78. MR1316710Google Scholar

  • [29] S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 34(46) (1982), 149-153.Google Scholar

  • [30] S. L. Singh, A. M. Hashim, New coincidence and fixed point theorems for strictly contractive hybrid maps, Aust. J. Math. Anal. Appl. 2(1) (2005), Art. 12, 7 pages.Google Scholar

  • [31] W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces J. Appl. Math. Article ID 637958, 14 pages, 2011. MR2822403Google Scholar

  • [32] D. Turkoglu, I. Altun, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying an implicit relation, Bol. Soc. Mat. Mexicana 13 (2007), 195-205.Google Scholar

  • [33] Y. K. Vijaywar, N. P. S. Bawa, P. K. Shrivastava, Coincidence and common fixed point theorems for hybrid contractions in symmetric spaces, Demonstratio Math. 45(3) (2012), 611-620.Google Scholar

  • [34] W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), 361-373. Google Scholar

About the article

Received: 2013-03-12

Published Online: 2014-12-11

Published in Print: 2014-12-01


Citation Information: Demonstratio Mathematica, Volume 47, Issue 4, Pages 949–962, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.2478/dema-2014-0075.

Export Citation

© by Mohammad Imdad. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in