[1] M. Aamri, D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270(1) (2002), 181-188. MR1911759 (2003d:54057)Google Scholar

[2] M. Aamri, D. El. Moutawakil, Common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-notes 3 (2003), 156-162.Google Scholar

[3] J. Ali, M. Imdad, Common fixed points of nonlinear hybrid mappings under strict contractions in semi-metric spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), 830-837.Web of ScienceGoogle Scholar

[4] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322(2) (2006), 796-802. MR2250617 (2007c:47066)Google Scholar

[5] D. K. Burke, Cauchy sequences in semi-metric spaces, Proc. Amer. Math. Soc. 33 (1972), 161-164.CrossrefGoogle Scholar

[6] S. H. Cho, G. Y. Lee, J. S. Bae, On coincidence and fixed-point theorems in symmetric spaces, Fixed Point Theory Appl., Article ID 562130, 9 pages, 2008.Google Scholar

[7] F. Galvin, S. D. Shore, Completeness in semi-metric spaces, Pacific. J. Math. 113(1) (1984), 67-75.Google Scholar

[8] D. Gopal, M. Hasan, M. Imdad, Absorbing pairs facilitating common fixed point theorems for Lipschitzian type mappings in symmetric space, Commun. Korean Math. Soc. 27(2) (2012), 385-397.Google Scholar

[9] D. Gopal, M. Imdad, C. Vetro, Common fixed point theorems for mappings satisfying common property (E.A.) in symmetric spaces, Filomat 25(2) (2011), 59-78.Web of ScienceGoogle Scholar

[10] T. L. Hicks, B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Anal. 36 (1999), 331-344.Google Scholar

[11] M. Imdad, A. Ahmad, S. Kumar, On nonlinear non-self hybrid contractions, Rad. Mat. 10(2) (2001), 243-254.Google Scholar

[12] M. Imdad, J. Ali, Common fixed point theorems in symmetric spaces employing a new implicit function and common property (E.A), Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 421-433.Google Scholar

[13] M. Imdad, J. Ali, Jungck’s common fixed point theorem and E.A property, Acta Math. Sinica (English Ser.) 24(1) (2008), 87-94.CrossrefWeb of ScienceGoogle Scholar

[14] M. Imdad, J. Ali, L. Khan, Coincidence and fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl. 320 (2006), 352-360.Google Scholar

[15] M. Imdad, A. H. Soliman, Some common fixed point theorems for a pair of tangential mappings in symmetric spaces, Appl. Math. Lett. 23(4) (2010), 351-355.Web of ScienceCrossrefGoogle Scholar

[16] S. Itoh, W. Takahashi, Single-valued mappings, multivalued mappings and fixed-point theorems, J. Math. Anal. Appl. 59(3) (1977), 514-521. MR0454752 (56 #13000)Google Scholar

[17] J. Jachymski, J. Matkowski, T. Swiatkowski, Nonlinear contractions on semimetric spaces, J. Appl. Anal. 1(2) (1995), 125-134. MR1395268Google Scholar

[18] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986), 771-779. MR0870534 (87m:54122)Google Scholar

[19] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4(2) (1996), 199-215.Google Scholar

[20] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299(1) (2004), 235-241. MR2091284 (2005e:54042)Google Scholar

[21] H. Kaneko, S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. Math. Math. Sci. 12(2) (1989), 257-262. MR0994907 (90i:54097)Google Scholar

[22] E. Karapınar, D. K. Patel, M. Imdad, D. Gopal, Some nonunique common fixed point theorems in symmetric spaces through CLRST property, Int. J. Math. Math. Sci. Article ID 753965, 8 pages, 2013. DOI: 10.1155/2013/753965Google Scholar

[23] D. Miheµ, A note on a paper of Hicks and Rhoades, Nonlinear Anal. 65 (2006), 1411-1413.Google Scholar

[24] D. El Moutawakil, A fixed point theorem for multivalued maps in symmetric spaces, Appl. Math. E-Notes 4 (2004), 26-32.Google Scholar

[25] S. B. Jr. Nadler, Multivalued contraction mappings, Pacific J. Math. 20(2) (1969), 457-488.Google Scholar

[26] R. P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.Google Scholar

[27] R. P. Pant, V. Pant, Common fixed points under strict contractive conditions, J. Math. Anal. Appl. 248 (2000), 327-332. Google Scholar

[28] H. K. Pathak, Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hungar. 67(1-2) (1995), 69-78. MR1316710Google Scholar

[29] S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 34(46) (1982), 149-153.Google Scholar

[30] S. L. Singh, A. M. Hashim, New coincidence and fixed point theorems for strictly contractive hybrid maps, Aust. J. Math. Anal. Appl. 2(1) (2005), Art. 12, 7 pages.Google Scholar

[31] W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces J. Appl. Math. Article ID 637958, 14 pages, 2011. MR2822403Google Scholar

[32] D. Turkoglu, I. Altun, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying an implicit relation, Bol. Soc. Mat. Mexicana 13 (2007), 195-205.Google Scholar

[33] Y. K. Vijaywar, N. P. S. Bawa, P. K. Shrivastava, Coincidence and common fixed point theorems for hybrid contractions in symmetric spaces, Demonstratio Math. 45(3) (2012), 611-620.Google Scholar

[34] W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), 361-373. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.