Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2017: 0.28
SCImago Journal Rank (SJR) 2017: 0.231
Source Normalized Impact per Paper (SNIP) 2017: 0.443
Mathematical Citation Quotient (MCQ) 2017: 0.12
ICV 2017: 121.78



Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 49, Issue 3

Issues

Persistence and Global Attractivity for a Discretized Version of a General Model of Glucose-Insulin Interaction

Dinh Cong Huong
Published Online: 2016-08-20 | DOI: https://doi.org/10.1515/dema-2016-0026

Abstract

In this paper, we construct a non-standard finite difference scheme for a general model of glucose-insulin interaction. We establish some new sufficient conditions to ensure that the discretized model preserves the persistence and global attractivity of the continuous model. One of the main findings in this paper is that we derive two important propositions (Proposition 3.1 and Proposition 3.2) which are used to prove the global attractivity of the discretized model. Furthermore, when investigating the persistence and, in some cases, the global attractivity of the discretized model, the nonlinear functions f and h are not required to be differentiable. Hence, our results are more realistic because the statistical data of glucose and insulin are collected and reported in discrete time. We also present some numerical examples and their simulations to illustrate our results.

Keywords: delay difference equations; !-limit set of a persistent solution; full time solution; non-standard difference; numerical discretized model

References

  • [1] A. De Gaetano, O. Arino, Mathematical modeling of the intravenous glucose tolerance test, J. Math. Biol. 40 (2000), 136-168.Google Scholar

  • [2] J. Li, Y. Kuang, B. Li, Analysis of IVGTT glucose-insulin interaction models with time-delay, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), 103-124.Google Scholar

  • [3] P. Palumbo, S. Panunzi, A. De Gaetano, Qualitative behavior of a family of delaydifferential models of the glucose-insulin system, Discrete Contin. Dyn. Syst. Ser. B 7 (2007), 399-424.Google Scholar

  • [4] L. Li, W. Zheng, Global stability of a delay model of glucose-insulin interaction, Math. Comput. Modelling 52 (2010), 472-480.Google Scholar

  • [5] J. D. Lambert, Numerical Methods for Ordinary Differential Systems: the Initial Value Problem, Wiley, Chichester, 1994.Google Scholar

  • [6] R. E. Mickens, Nonstandard Finite Difference Model of Differential Equations, World Scientific, Singapore, 1994.Google Scholar

  • [7] R. E. Mickens, Application of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2000.Google Scholar

  • [8] R. E. Mickens, Nonstandard finite difference schemes for differential equations, J. Difference Equ. Appl. 8 (2002), 823-847.Google Scholar

  • [9] D. Ding, Q. Ma, X. Ding, A non-standard finite difference scheme for an epidemic model with vaccination, J. Difference Equ. Appl. 19 (2013), 179-190.Web of ScienceGoogle Scholar

  • [10] S. M. Moghadas, M. E. Alexander, B. D. Corbett, A. B. Gumel, A positivity preserving Mickens-type discretization of an epidemic model, J. Difference Equ. Appl. 9 (2003), 1037-1051.Google Scholar

  • [11] R. Anguelov, J. M. S. Lubuma, Nonstandard finite difference method by nonlocal approximation, Math. Comput. Simulation 61 (2003), 465-475.CrossrefGoogle Scholar

  • [12] M. Chen, D. P. Clemence, Stability properties of a nonstandard finite difference scheme for a hantavirus epidemic model, J. Difference Equ. Appl. 12 (2006), 1243-1256.Google Scholar

  • [13] B. M. Chen-Charpentier, D. T. Dimitrov, H. V. Kojouharov, Combined nonstandard numerical methods for ODEs with polynomial right-hand sides, Math. Comput. Simulation 73 (2006), 105-113.Google Scholar

  • [14] D. C. Huong, N. V. Mau, On a nonlinear difference equation with variable delay, Demonstratio Math. 46 (2013), 123-135.Google Scholar

  • [15] D. V. Giang, Y. Lenbury, A. De Gaetano, P. Palumbo, Delay models of glucose-insulin systems: Global stability and oscillated solutions conditional on delays, J. Math. Anal. Appl. 343 (2008), 996-1006.Google Scholar

  • [16] D. V. Giang, D. C. Huong, Extinction, persistence and global stability in models of population growth, J. Math. Anal. Appl. 308 (2005), 195-207.Google Scholar

About the article

Received: 2014-09-08

Published Online: 2016-08-20

Published in Print: 2016-09-01


Citation Information: Demonstratio Mathematica, Volume 49, Issue 3, Pages 302–318, ISSN (Online) 2391-4661, ISSN (Print) 0420-1213, DOI: https://doi.org/10.1515/dema-2016-0026.

Export Citation

© by Dinh Cong Huong. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in