[1] Omori H., Groups of diffeomorphisms and their subgroups, Trans. Amer. Math. Soc., 1973, 179, 85-122Google Scholar

[2] Omori H., A remark on nonenlargeable Lie algebras, J. Math. Soc. Japan, 1981, 33(4), 707-710Google Scholar

[3] Omori H., Infinite dimensional Lie groups, AMS Translations of Mathematical Monographs, Amer. Math. Soc., Providence, R.I., 1997, 158Google Scholar

[4] Kriegl A., Michor P. W., The convenient setting for global analysis, AMS Math. Surveys and Monographs, AMS, Providence, 1997, 53Google Scholar

[5] Khesin B., Wendt R., Geometry of infinite dimensional groups, Springer, 2008Google Scholar

[6] Magnot J.-P., Difféologie du fibré d’Holonomie en dimension infinie, C. R. Math. Soc. Roy. Can., 2006, 28(4), 121-127Google Scholar

[7] Watts J., Diffeologies, differentiable spaces and symplectic geometry, University of Toronto, PhD thesis, 2013, arXiv:1208.3634v1Google Scholar

[8] Frölicher A., Kriegl A., Linear spaces and differentiation theory, Wiley series in Pure and Applied Mathematics, Wiley Interscience, 1988Google Scholar

[9] Magnot J.-P., Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation, Int. J. Geom. Meth. Mod. Phys., 2013, 10(9), DOI: 10.1142/S0219887813500436Google Scholar

[10] Hirsch M., Differential topology, Springer, 1997Google Scholar

[11] Kriegl A., Michor P. W., Rainer A., An exotic zoo of diffeomorphism groups on Rn, Ann. Global Anal. Geom., 2015, 47(2), 179-222Google Scholar

[12] Kolar I., Michor P. W., Slovak J., Natural operations in differential geometry, Springer, 1993Google Scholar

[13] Souriau J.-M., Un algorithme générateur de structures quantiques, Astérisque (hors série), 1985, 341-399Google Scholar

[14] Iglesias-Zemmour P., Diffeology, Mathematical Surveys and Monographs, 2013, 185Google Scholar

[15] Neeb K.-H., Towards a Lie theory of locally convex groups, Japanese J. Math., 2006, 1, 291-468Google Scholar

[16] Christensen D., Sinnamon G., Wu E., The D-topology for diffeological spaces, Pacific J. Math., 2014, 272(1), 87-110Google Scholar

[17] Magnot J.-P., q-deformed Lax equations and their differential geometric background, Lambert Academic Publishing, Saarbrucken, Germany, 2015Google Scholar

[18] Dugmore D., Ntumba P., On tangent cones of Frölicher spaces, Quaetiones Mathematicae, 2007, 30(1), 67-83Google Scholar

[19] Christensen D., Wu E., Tangent spaces and tangent bundles for diffeological spaces, Cahiers de Topologie et Géométrie Différentielle, 2016, LVII, 3-50Google Scholar

[20] Leslie J., On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory, 2003, 13, 427-442Google Scholar

[21] Berger M., A panoramic overview of Riemannian geometry, Springer, 2003Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.