Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2018: 121.16

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 51, Issue 1

Issues

The generalized hypergeometric difference equation

Martin Bohner / Tom Cuchta
Published Online: 2018-06-21 | DOI: https://doi.org/10.1515/dema-2018-0007

Abstract

A difference equation analogue of the generalized hypergeometric differential equation is defined, its contiguous relations are developed, and its relation to numerous well-known classical special functions are demonstrated.

Keywords: special functions; discrete hypergeometric series; delay difference equations; contiguous relation; generalized hypergeometric functions

MSC 2010: 33C20; 39A12

References

  • [1] Luke Y., The special functions and their approximations, Mathematics in Science and Engineering, Academic Press, New York-London, 1969, 53Google Scholar

  • [2] Rainville E. D., Special functions, Chelsea Publishing Co., Bronx, N.Y., first edition, 1971Google Scholar

  • [3] Rainville E. D., The continuous function relations for pFq with application to Batmean’s J^u,v_n and Rice’s Hn(ζ, p, v), Bull. Am. Math. Soc., 1945, 51, 714-723Google Scholar

  • [4] Andrews G. E., Askey R., Roy R., Special functions (Encyclopedia of Mathematics and its Applications), Cambridge University Press, Cambridge, 1999Google Scholar

  • [5] Batchelder P. M., The hypergeometric difference equation, ProQuest LLC, Ann Arbor, MI, 1916, Thesis (Ph.D.)-Harvard UniversityGoogle Scholar

  • [6] Batchelder P. M., An introduction to linear difference equations, Dover Publications Inc., New York, 1967Google Scholar

  • [7] Gasper G., Rahman M., Basic hypergeometric series (Encyclopedia of Mathematics and its Applications), Cambridge University Press, Cambridge, 1990Google Scholar

  • [8] Khan M. A., Discrete hypergeometric functions and their properties, Commun. Fac. Sci. Univ. Ankara, Ser. A1, Math. Stat., 1994, 43(1-2), 31-40Google Scholar

  • [9] Gasper G., Products of terminating 3F2(1) series, Pac. J. Math., 1975, 56, 87-95Google Scholar

  • [10] Suslov S. K., Classical orthogonal polynomials of a discrete variable continuous orthogonality relation, Lett. Math. Phys., 1987, 14(1), 77-88Google Scholar

  • [11] Bohner M., Peterson A., Dynamic equations on time scales - An introduction with applications, Birkhäuser Boston Inc., Boston, MA, 2001Google Scholar

  • [12] Bohner M., Cuchta T., The Bessel difference equation, Proc. Amer. Math. Soc., 2017, 145(4), 1567-1580Google Scholar

  • [13] Slavík A., Discrete Bessel functions and partial difference equations, J. Difference Equ. Appl., 2018, 24(3), 425-437Web of ScienceGoogle Scholar

About the article

Received: 2017-11-20

Accepted: 2018-03-27

Published Online: 2018-06-21


Citation Information: Demonstratio Mathematica, Volume 51, Issue 1, Pages 62–75, ISSN (Online) 2391-4661, DOI: https://doi.org/10.1515/dema-2018-0007.

Export Citation

© 2018 Martin Bohner and Tom Cuchta. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in