[1] Abbas S., Benchohra M., N’Guérékata G. M., Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012Google Scholar

[2] Abbas S., Benchohra M., N’Guérékata G. M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015Google Scholar

[3] Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012Google Scholar

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006Google Scholar

[5] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993Google Scholar

[6] Lakshmikantham V., Leela S., Vasundhara J., Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009Google Scholar

[7] Samko S. G., Kilbas A. A.,Marichev O. L., Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993Google Scholar

[8] Butzer P. L., Kilbas A. A., Trujillo J. J., Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J.Math. Anal. Appl., 2002, 269, 1-27Google Scholar

[9] Butzer P. L., Kilbas A. A., Trujillo J. J., Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 2002, 270, 1-15Google Scholar

[10] Pooseh S., Almeida R., Torres D., Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative, Numer. Funct. Anal. Optim., 2012, 33(3), 301-319Web of ScienceGoogle Scholar

[11] Abbas A., Alaidarous E., Benchohra M., Nieto J. J, Existence and stability of solutions for Hadamard-Stieltjes fractional integral equations, Discrete Dyn. Nat. Soc., 2015, Art. ID 317094Google Scholar

[12] Adjabi Y., Jarad F., Baleanu D., Abdeljawad T., On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 2016, 21(4), 661-681Google Scholar

[13] Aljoudi S., Ahmad B., Nieto J. J., Alsaedi A., A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals, 2016, 91, 39-46Web of ScienceCrossrefGoogle Scholar

[14] Benchohra M., Bouriah S., Nieto J. J., Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations, Rev. R. Acad. Cienc. Exactas, Fís. Nat. Ser. A Math. RACSAM, 2018, 112, 25-35Google Scholar

[15] Gambo Y. Y., Jarad F., Baleanu D., Abdeljawad T., On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ., 2014, 2014:10Google Scholar

[16] Wang G., Pei K., Baleanu D., Explicit iteration to Hadamard fractional integro-differential equations on infinite domain, Adv. Difference Equ., 2016, 2016:299Google Scholar

[17] Abbas S., Benchohra M., Nonlinear quadratic Volterra Riemann-Liouville integral equations of fractional order, Nonlinear Anal. Forum, 2012, 17, 1-9Google Scholar

[18] Abbas S., Benchohra M., Fractional order Riemann-Liouville integral equations with multiple time delay, Appl. Math. ENotes, 2012, 12, 79-87Google Scholar

[19] Abbas S., Benchohra M., Henderson J., On global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Comm. Appl. Nonlinear Anal., 2012, 19, 79-89Google Scholar

[20] Abbas S., Benchohra M., Vityuk A. N.,On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal., 2012, 15(2), 168-182Web of ScienceGoogle Scholar

[21] Banaś J., Dhage B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., 2008, 69(7), 1945-1952Google Scholar

[22] Banaś J., Rzepka B., On existence and asymptotic stability of solutions of a nonlinear integral equation, J.Math. Anal. Appl., 2003, 284, 165-173Google Scholar

[23] Banaś J., Zając T., Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlinear Anal., 2009, 71, 5491-5500Google Scholar

[24] Banaś J., Zając T., A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl., 2011, 375, 375-387Web of ScienceCrossrefGoogle Scholar

[25] Darwish M. A., Henderson J., O’Regan D., Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math. Soc., 2011, 48(3), 539-553CrossrefGoogle Scholar

[26] Pachpatte B. G., On Volterra-Fredholm integral equation in two variables, Demonstratio Math., 2007, XL(4), 839-852Google Scholar

[27] Pachpatte B. G., On Fredholm type integral equation in two variables, Differ. Equ. Appl., 2009, 1, 27-39Google Scholar

[28] Hadamard J., Essai sur L’étude des Fonctions Données par Leur Développment de Taylor, J. Pure Appl. Math., 1892, 4(8), 101-186Google Scholar

[29] Frigon M., Granas A., Théorèmes d’Existence pour des Inclusions Différentielles sans Convexité, C. R. Acad. Sci. Paris, Ser. I, 1990, 310, 819-822Google Scholar

[30] Avramescu C., Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ., 2003, 5, 1-15Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.