[1] Dieudonné J., Un exemple d’un espace normal non susceptible d’une structure uniforme d’espace complet, C. R. Acad. Sci. Paris, 1939, 209, 145-147Google Scholar

[2] Hessenberg G., Grundbegriffe der Mengenlehre: zweiter Bericht über das Unendliche in der Mathematik, Vandenhöck & Ruprecht, Göttingen, 1906Google Scholar

[3] Ulam S., Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math., 1930, 16, 140-150 Google Scholar

[4] Alexandroff A. D., Additive set functions in abstract spaces, Mat. Sbornik: 1940, 8(50), 307-348; 1941, 9(51), 563-628; 1943, 13(55), 169-238Google Scholar

[5] Rohlin V. A., On the fundamental ideas of measure theory, Mat. Sbornik, 1949, 25, 107-150Google Scholar

[6] Marczewski E., On compact measures, Fund. Math., 1953, 40, 113-124Google Scholar

[7] Marczewski E., Remarks on the convergence of measurable sets and measurable functions, Colloq. Math., 1955, 3, 118-124Google Scholar

[8] Marczewski E., Collected mathematical papers, PAN, Warszawa, 1996Google Scholar

[9] Bogachev V., Measure Theory, Volumes 1 and 2, Springer-Verlag Berlin Heidelberg, 2007Google Scholar

[10] Kałamajska A., On Young measures controlling discontinuous functions, J. Conv. Anal., 2006, 13, 177-192Google Scholar

[11] Kałamajska A., Kružík M., Oscillations and concentrations in sequences of gradients, ESAIM: COCV, 2008, 14, 71-104Web of ScienceGoogle Scholar

[12] Kružík M., Roubíček T., On the measures of DiPerna and Majda, Math. Bohem., 1997, 122, 383-399Google Scholar

[13] Alibert J., Bouchitté G., Non-uniform integrability and generalized Young measures, J. Convex Anal., 1997, 4, 125-145Google Scholar

[14] Chipot M., Kinderlehrer D., Equilibrium configurations of crystals, Arch. Rational. Mech. Anal., 1988, 103, 237-277Google Scholar

[15] Kružík M., Prohl A., Young measure approximation in micromagnetics, Numer. Math., 2001, 90, 291-307Google Scholar

[16] DiPerna R.,Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm.Math. Phys., 1987, 108, 667-689Google Scholar

[17] Moschovakis Y., Notes on Set Theory, Springer Science and Business Media, 2006Google Scholar

[18] Hrbacek K., Jech T., Introduction to Set Theory, Third Edition, Revised and Expanded, CRC Press, 1999Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.