Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2018: 121.16

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 51, Issue 1

Issues

A Unified Algorithm for Solving Split Generalized Mixed Equilibrium Problem, and for Finding Fixed Point of Nonspreading Mapping in Hilbert Spaces

Lateef Olakunle Jolaoso / Kazeem Olawale Oyewole / Chibueze Christian Okeke / Oluwatosin Temitope Mewomo
  • Corresponding author
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-14 | DOI: https://doi.org/10.1515/dema-2018-0015

Abstract

The purpose of this paper is to study a split generalized mixed equilibrium problem and a fixed point problem for nonspreading mappings in real Hilbert spaces.We introduce a new iterative algorithm and prove its strong convergence for approximating a common solution of a split generalized mixed equilibrium problem and a fixed point problem for nonspreading mappings in real Hilbert spaces. Our algorithm is developed by combining a modified accelerated Mann algorithm and a viscosity approximation method to obtain a new faster iterative algorithm for finding a common solution of these problems in real Hilbert spaces. Also, our algorithm does not require any prior knowledge of the bounded linear operator norm. We further give a numerical example to show the efficiency and consistency of our algorithm. Our result improves and compliments many recent results previously obtained in this direction in the literature.

Keywords: split mixed equilibrium; nonspreading mapping; fixed point problem; accelerated algorithm; iterative method; viscosity approximation method

MSC 2010: 65K15; 47J25; 65J15; 90C33

References

  • [1] Blum E., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1-4), 123-145Google Scholar

  • [2] Ceng L.-C., Yao J.-C., A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 2008, 214, 186-201Web of ScienceGoogle Scholar

  • [3] Combettes P. L., Hirstoaga S. A., Equilibrium programming in Hilbert space, J. Nonlinear Convex Anal., 2005, 6, 117-136Google Scholar

  • [4] Flam S. D., Antipin A. S., Equilibrium programming using proximal-like algorithm, Math. Programming, 1997, 78(1), Ser. A, 29-41Google Scholar

  • [5] Censor Y., Eflving T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 1994, 8, 221-239Google Scholar

  • [6] Censor Y., Bortfeld T., Martin B., Trofimov A., A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 2006, 51(2), 2353-2365PubMedCrossrefGoogle Scholar

  • [7] Censor Y., Elfving T., Kopf N., Bortfeld T., The multiple-set split feasibility problem and its application for inverse problems, Inverse Problem, 2005, 21(6), 2071-2084CrossrefGoogle Scholar

  • [8] Censor Y., Motova A., Segal A., A pertubed projections and subgradient projections for the multiple-set split feasibility problem, J. Math. Anal. Appl., 2007, 327, 1244-1256Google Scholar

  • [9] Chen T., Shen J., Image processing and Analysis variational, PDE, Wavelent and Stochastic Methods, SIAM, Philadelpha, 2005Google Scholar

  • [10] Abass H. A., Ogbuisi F. U., Mewomo O. T., Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm, U.P.B. Sci. Bull., Series A, 2018, 80(1), 175-190Google Scholar

  • [11] Halpern B., Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 1967, 73, 957-961Google Scholar

  • [12] He S., Yeng C., Boundary point algorithms for minimum norm fixed points of nonexpansive mappings, Fixed Point Theory Appl., 2014, 56Web of ScienceGoogle Scholar

  • [13] Jolaoso L. O., Ogbuisi F. U., Mewomo O. T., An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math., 2017, DOI: 10.1515/apam-2017-0037CrossrefGoogle Scholar

  • [14] Krasnoselskii M. A., Two remarks on the method of successive approximations, Usp. Math. Nauk., 1955, 10, 123-127Google Scholar

  • [15] Mann W. R., Mean value methods in iterations, Proc. Amer. Math. Soc., 1953, 4, 506-510CrossrefGoogle Scholar

  • [16] Nakajo K., TakahashiW., Strong convergence theorems for nonexpansivemappings and nonexpansive semigroups, J.Math. Anal. Appl., 2003, 279(2), 372-379Google Scholar

  • [17] Ogbuisi F. U., Mewomo O. T., Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 2018, 19(1), 335-358Web of ScienceCrossrefGoogle Scholar

  • [18] Mewomo O. T., Ogbuisi F. U., Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces, Quest. Math., 2018, 14(1), 129-148CrossrefGoogle Scholar

  • [19] Ogbuisi F. U., Mewomo O. T., Iterative solution of split variational inclusion problem in a real Banach space, Afr. Mat., 2017, 28(1-2), 295-309Google Scholar

  • [20] Ogbuisi F. U., Mewomo O. T., On split generalized mixed equilibriumproblems and fixed point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl., 2016, 19(3), 2109-2128Google Scholar

  • [21] Okeke C. C., Mewomo O. T., On split equilibrim problem, variational inequality problem and fixed point problem for multivalued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2017, 9(2), 255-280Google Scholar

  • [22] Shehu Y., Mewomo O. T., Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 2016, 32(11), 1357-1376Google Scholar

  • [23] Shehu Y.,MewomoO. T., Ogbuisi F. U., Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta Math. Sci. Ser. B (Engl. Ed.), 2016, 36(3), 913-930CrossrefGoogle Scholar

  • [24] Moudafi A., Viscosity approximation method for fixed-points problems, J. Math. Anal. Appl., 2000, 241(1), 46-55Google Scholar

  • [25] Xu H. K., Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl., 2004, 298(1), 279-291Google Scholar

  • [26] Polyak B. T., Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., 1964, 4(5), 1-17CrossrefGoogle Scholar

  • [27] Alvarez F., Attouch H., An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 2001, 9(1-2), 3-11Google Scholar

  • [28] Moudafi A., Oliny M., Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 2003, 155(2), 447-454Google Scholar

  • [29] Lorenz D., Pock T., An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 2015, 51(2), 311-325Google Scholar

  • [30] Chen C., Chan R. H., Ma S., Yang J., Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 2015, 8(4), 2239-2267Google Scholar

  • [31] Beck A., Teboulle M., A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2009, 2(1), 183-202CrossrefGoogle Scholar

  • [32] Chambole A., Dossal C. H., On the convergence of the iterates of the "fast shrinkage/thresholding algorithm", J. Optim. Theory Appl., 2015, 166(3), 968-982Google Scholar

  • [33] Mainge P. E., Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 2008, 219(1), 223-236Web of ScienceGoogle Scholar

  • [34] Bot R. I., Csetnek E. R., Hendrich C., Inertial Douglas-Rachford splitting for monotone inclusions, Appl.Math. Comput., 2015, 256, 472-487Google Scholar

  • [35] Picard E., Memoire sur la theorie des equations aux derives partielles et la methode des approximation successive, J.Math. Pures et Appl., 1890, 6, 145-210Google Scholar

  • [36] Nocedal J., Wright S. J., Numerical Optimization, Spinger Series in Operations Research and Financial Engineering, Vol 2, 2nd Edition, Spinger, Berlin, 2006Google Scholar

  • [37] Dong Q. L., Yuan H. B., Accelerated Mann and CQ algorithms for finding a fixed point of nonexpansive mapping, Fixed Point Theory Appl., 2015, 2015:125Web of ScienceGoogle Scholar

  • [38] Suntai S., Cholamjiak P., Cho Y. J., Cholamjiak W., On solving split equilibrium problems and fixed point problems of nonspreading multi-valued mappings in Hilbert space, Fixed Point Theory Appl., 2016, 2016:35CrossrefGoogle Scholar

  • [39] Rizvi S. H., A strong convergence theorem for split mixed equilibrium and fixed point problems for nonexpansive mappings in Hilbert space, J. Fixed Point Thoery Appl., 2018, 20(8), DOI: 10.1007/s11784-018-0487-8Google Scholar

  • [40] Hendrickx J. M., Olshevsky A., Matrix P-norms are NP-hard to approximate if p =6 1, 2,1, SIAM J. Matrix Anal. Appl., 2012, 31, 2802-2812Google Scholar

  • [41] Hussain N.,Marino G., Abdou A. N., OnMann’s methodwith viscosity for nonexpansive and nonspreadingmapping in Hilbert spaces, Abstr. Appl. Anal., 2014, Article ID: 152530, DOI: 10.1155/2014/152530Google Scholar

  • [42] Li S., Li L., Cao L., He X., Yue X., Hybrid extragradient method for generalized mixed equilibrium problem and fixed point problems in Hilbert space, Fixed Point Theory Appl., 2013, 2013:240CrossrefGoogle Scholar

  • [43] Xu H. K., Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 2002, 65(1), 109-113Google Scholar

  • [44] Onjai-uea N., Phuengrattana W., On solving split mixed equilibrium problems and fixed point problems of hybrid-type multivalued mappings in Hilbert spaces, J. Ineq. Appl., 2017, 2017:137.Google Scholar

About the article

Received: 2018-03-26

Accepted: 2018-06-15

Published Online: 2018-09-14


Citation Information: Demonstratio Mathematica, Volume 51, Issue 1, Pages 211–232, ISSN (Online) 2391-4661, DOI: https://doi.org/10.1515/dema-2018-0015.

Export Citation

© by Lateef Olakunle Jolaoso et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo
Computational and Applied Mathematics, 2020, Volume 39, Number 1
[2]
Chinedu Izuchukwu, Kazeem Olalekan Aremu, Olawale Kazeem Oyewole, Oluwatosin Temitope Mewomo, and Safeer Hussain Khan
Journal of Mathematics, 2019, Volume 2019, Page 1
[4]
A. Taiwo, L. O. Jolaoso, and O. T. Mewomo
Bulletin of the Malaysian Mathematical Sciences Society, 2019
[6]
H. Dehghan, C. Izuchukwu, O.T. Mewomo, D.A. Taba, and G.C. Ugwunnadi
Quaestiones Mathematicae, 2019, Page 1
[8]
Godwin C. Ugwunnadi, Chinedu Izuchukwu, and Oluwatosin T. Mewomo
Advances in Pure and Applied Mathematics, 2018, Volume 0, Number 0
[9]
C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan, and M. Abbas
Numerical Algorithms, 2018

Comments (0)

Please log in or register to comment.
Log in