[1] Blum E., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1-4), 123-145Google Scholar

[2] Ceng L.-C., Yao J.-C., A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 2008, 214, 186-201Web of ScienceGoogle Scholar

[3] Combettes P. L., Hirstoaga S. A., Equilibrium programming in Hilbert space, J. Nonlinear Convex Anal., 2005, 6, 117-136Google Scholar

[4] Flam S. D., Antipin A. S., Equilibrium programming using proximal-like algorithm, Math. Programming, 1997, 78(1), Ser. A, 29-41Google Scholar

[5] Censor Y., Eflving T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 1994, 8, 221-239Google Scholar

[6] Censor Y., Bortfeld T., Martin B., Trofimov A., A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 2006, 51(2), 2353-2365PubMedCrossrefGoogle Scholar

[7] Censor Y., Elfving T., Kopf N., Bortfeld T., The multiple-set split feasibility problem and its application for inverse problems, Inverse Problem, 2005, 21(6), 2071-2084CrossrefGoogle Scholar

[8] Censor Y., Motova A., Segal A., A pertubed projections and subgradient projections for the multiple-set split feasibility problem, J. Math. Anal. Appl., 2007, 327, 1244-1256Google Scholar

[9] Chen T., Shen J., Image processing and Analysis variational, PDE, Wavelent and Stochastic Methods, SIAM, Philadelpha, 2005Google Scholar

[10] Abass H. A., Ogbuisi F. U., Mewomo O. T., Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm, U.P.B. Sci. Bull., Series A, 2018, 80(1), 175-190Google Scholar

[11] Halpern B., Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 1967, 73, 957-961Google Scholar

[12] He S., Yeng C., Boundary point algorithms for minimum norm fixed points of nonexpansive mappings, Fixed Point Theory Appl., 2014, 56Web of ScienceGoogle Scholar

[13] Jolaoso L. O., Ogbuisi F. U., Mewomo O. T., An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math., 2017, DOI: 10.1515/apam-2017-0037CrossrefGoogle Scholar

[14] Krasnoselskii M. A., Two remarks on the method of successive approximations, Usp. Math. Nauk., 1955, 10, 123-127Google Scholar

[15] Mann W. R., Mean value methods in iterations, Proc. Amer. Math. Soc., 1953, 4, 506-510CrossrefGoogle Scholar

[16] Nakajo K., TakahashiW., Strong convergence theorems for nonexpansivemappings and nonexpansive semigroups, J.Math. Anal. Appl., 2003, 279(2), 372-379Google Scholar

[17] Ogbuisi F. U., Mewomo O. T., Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 2018, 19(1), 335-358Web of ScienceCrossrefGoogle Scholar

[18] Mewomo O. T., Ogbuisi F. U., Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces, Quest. Math., 2018, 14(1), 129-148CrossrefGoogle Scholar

[19] Ogbuisi F. U., Mewomo O. T., Iterative solution of split variational inclusion problem in a real Banach space, Afr. Mat., 2017, 28(1-2), 295-309Google Scholar

[20] Ogbuisi F. U., Mewomo O. T., On split generalized mixed equilibriumproblems and fixed point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl., 2016, 19(3), 2109-2128Google Scholar

[21] Okeke C. C., Mewomo O. T., On split equilibrim problem, variational inequality problem and fixed point problem for multivalued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2017, 9(2), 255-280Google Scholar

[22] Shehu Y., Mewomo O. T., Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 2016, 32(11), 1357-1376Google Scholar

[23] Shehu Y.,MewomoO. T., Ogbuisi F. U., Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta Math. Sci. Ser. B (Engl. Ed.), 2016, 36(3), 913-930CrossrefGoogle Scholar

[24] Moudafi A., Viscosity approximation method for fixed-points problems, J. Math. Anal. Appl., 2000, 241(1), 46-55Google Scholar

[25] Xu H. K., Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl., 2004, 298(1), 279-291Google Scholar

[26] Polyak B. T., Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., 1964, 4(5), 1-17CrossrefGoogle Scholar

[27] Alvarez F., Attouch H., An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 2001, 9(1-2), 3-11Google Scholar

[28] Moudafi A., Oliny M., Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 2003, 155(2), 447-454Google Scholar

[29] Lorenz D., Pock T., An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 2015, 51(2), 311-325Google Scholar

[30] Chen C., Chan R. H., Ma S., Yang J., Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 2015, 8(4), 2239-2267Google Scholar

[31] Beck A., Teboulle M., A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2009, 2(1), 183-202CrossrefGoogle Scholar

[32] Chambole A., Dossal C. H., On the convergence of the iterates of the "fast shrinkage/thresholding algorithm", J. Optim. Theory Appl., 2015, 166(3), 968-982Google Scholar

[33] Mainge P. E., Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 2008, 219(1), 223-236Web of ScienceGoogle Scholar

[34] Bot R. I., Csetnek E. R., Hendrich C., Inertial Douglas-Rachford splitting for monotone inclusions, Appl.Math. Comput., 2015, 256, 472-487Google Scholar

[35] Picard E., Memoire sur la theorie des equations aux derives partielles et la methode des approximation successive, J.Math. Pures et Appl., 1890, 6, 145-210Google Scholar

[36] Nocedal J., Wright S. J., Numerical Optimization, Spinger Series in Operations Research and Financial Engineering, Vol 2, 2nd Edition, Spinger, Berlin, 2006Google Scholar

[37] Dong Q. L., Yuan H. B., Accelerated Mann and CQ algorithms for finding a fixed point of nonexpansive mapping, Fixed Point Theory Appl., 2015, 2015:125Web of ScienceGoogle Scholar

[38] Suntai S., Cholamjiak P., Cho Y. J., Cholamjiak W., On solving split equilibrium problems and fixed point problems of nonspreading multi-valued mappings in Hilbert space, Fixed Point Theory Appl., 2016, 2016:35CrossrefGoogle Scholar

[39] Rizvi S. H., A strong convergence theorem for split mixed equilibrium and fixed point problems for nonexpansive mappings in Hilbert space, J. Fixed Point Thoery Appl., 2018, 20(8), DOI: 10.1007/s11784-018-0487-8Google Scholar

[40] Hendrickx J. M., Olshevsky A., Matrix P-norms are NP-hard to approximate if p =6 1, 2,1, SIAM J. Matrix Anal. Appl., 2012, 31, 2802-2812Google Scholar

[41] Hussain N.,Marino G., Abdou A. N., OnMann’s methodwith viscosity for nonexpansive and nonspreadingmapping in Hilbert spaces, Abstr. Appl. Anal., 2014, Article ID: 152530, DOI: 10.1155/2014/152530Google Scholar

[42] Li S., Li L., Cao L., He X., Yue X., Hybrid extragradient method for generalized mixed equilibrium problem and fixed point problems in Hilbert space, Fixed Point Theory Appl., 2013, 2013:240CrossrefGoogle Scholar

[43] Xu H. K., Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 2002, 65(1), 109-113Google Scholar

[44] Onjai-uea N., Phuengrattana W., On solving split mixed equilibrium problems and fixed point problems of hybrid-type multivalued mappings in Hilbert spaces, J. Ineq. Appl., 2017, 2017:137.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.