[1] Hassouni A., Moudafi A., A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 1994, 185(3), 706-712Google Scholar

[2] Adly S., Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J.Math. Anal. Appl., 1996, 201(2), 609-630Google Scholar

[3] Huang N. J., Generalized nonlinear variational inclusions with noncompact valued mappings, Appl. Math. Lett., 1996, 9(3), 25-29CrossrefGoogle Scholar

[4] Ding X. P., Perturbed proximal point algorithm for generalized quasi-variational inclusions, J.Math. Anal. Appl., 1997, 210(1), 88-101Google Scholar

[5] Kazmi K. R., Mann and Ishikawa type perturbed iterative algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl., 1997, 209(2), 572-584Google Scholar

[6] Kazmi K. R., Bhat M. I., Iterative algorithm for a system of nonlinear variational-like inclusions, Comput. Math. Appl., 2004, 48(12), 1929-1935CrossrefGoogle Scholar

[7] Kazmi K. R., Bhat, M. I., Convergence and stability of iterative algorithms for generalized set-valued variational-like inclusions in Banach spaces, Appl. Math. Comput., 2005, 166(1), 164-180Google Scholar

[8] Bhat M. I., Zahoor B., Generalized variational-like inclusion problem involving (H(·, ·) − _)-monotone operators in Banach spaces, J. Nonlinear Anal. Optim., 2017, 8(1), 7-19Google Scholar

[9] Bhat M. I., Zahoor B., (H(·, ·), _)-monotone operatorswith an application to a system of set-valued variational-like inclusions in Banach spaces, Nonlinear Funct. Anal. Appl., 2017, 22(3), 673-692Google Scholar

[10] Ceng L. C., Wen C. F., Yao Y., Iteration approaches to hierarchial variational inequalities for infinite nonexpansive mappings and finding zero points of m-accretive operators, J. Nonlinear Var. Anal., 2017, 1(2), 213-235Google Scholar

[11] Chang S. S., Kim J. K., Kim K. H., On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 2002, 268(1), 89-108Google Scholar

[12] Fang Y. P., Huang N. J., H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 2003, 145(2-3), 795-803Google Scholar

[13] Fang Y. P., Huang N. J., Thompson H. B., A new system of variational inclusions with (H, _) monotone operators in Hilbert spaces, Comput. Math. Appl., 2005, 49(2-3), 365-374CrossrefGoogle Scholar

[14] He X. F., Lao J., He Z., Iterative methods for solving variational inclusions in Banach spaces, J. Comput. Appl. Math., 2007, 203(1), 80-86Web of ScienceGoogle Scholar

[15] Huang N. J., Fang Y. P., Generalized m-accretive mappings in Banach spaces, J. Sichuan University, 2001, 38(4), 591-592Google Scholar

[16] Huang N. J., Fang Y. P., Cho Y. J., Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions, J. Nonlinear Convex Anal., 2003, 4(2), 301-308Google Scholar

[17] Kalia R. N., Verma R. U., H-monotone nonlinear variational inclusion systems, Nonlinear Funct. Anal. Appl., 2006, 11(2), 195-200Google Scholar

[18] Kim J. K., Kim D. S., A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal., 2004, 11(1), 235-243Google Scholar

[19] Kim J. K., Buong Ng., New explicit iteration method for variational inequalities on the set of common fixed points for a finite family of nonexpansive mappings, J. Inequal. Appl., 2013, 2013: 419Web of ScienceCrossrefGoogle Scholar

[20] Kim J. K., Kim K. S., New systems of generalized mixed variational inequalities with nonlinear mappings in Hilbert spaces, J. Comput. Anal. Appl., 2010, 12(3), 601-612Google Scholar

[21] Lan H. Y., Kim J. H., Cho Y. J., On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl., 2007, 327(1), 481-493CrossrefGoogle Scholar

[22] Lee C. H., Ansari Q. H., Yao J. C., A perturbed algorithm for strongly nonlinear variational like inclusions, Bull. Aust. Math. Soc., 2000, 62(3), 417-426Google Scholar

[23] Li X., Huang N. J., Graph convergence for the H(·, ·)-accretive operators in Banach spaces with an application, Appl. Math. Comput., 2011, 217(22), 9053-9061Google Scholar

[24] Luo X. P., Huang N. J., Generalized H − _-accretive operators in Banach spaces with an application to variational inclusions, Appl. Math. Mech., (English Edition), 2010, 31(4), 501-510CrossrefWeb of ScienceGoogle Scholar

[25] Alimohammady M., Balooce J., Cho Y. J., Roohi M., Iterative algorithms for new class of extended general nonconvex setvalued variational inequalities, Nonlinear Anal. TMA, 2010, 73, 3907-3923Google Scholar

[26] Sahu N. K., Nahak C., Nanda S., Graph convergence and approximation solvability of a class of implicit variational inclusion problems in Banach spaces, J. Indian Math. Soc., 2014, 81(1-2), 155-172Google Scholar

[27] Sahu N. K., Mohapatra R. N., Nahak C., Nanda S., Approximation solvability of a class of A-monotone implicit variational inclusion problems in semi-inner product spaces, Appl. Math. Comput., 2014, 236, 109-117Web of ScienceGoogle Scholar

[28] Shan S. Q., Xiao Y. B., Huang N. J., A new system of generalized implicit set-valued variational inclusions in Banach spaces, Nonlinear Funct. Anal. Appl., 2017, 22(5), 1091-1105Google Scholar

[29] Verma R. U., General nonlinear variational inclusion problems involving A-monotone mappings, Appl. Math. Lett., 2006, 19(9), 960-963CrossrefGoogle Scholar

[30] Verma R. U., A generalization to variational convergence of operators, Adv. Nonlinear Var. Inequal., 2008, 11, 97-101Google Scholar

[31] Verma R. U., On general over-relaxed proximal point algorithm and applications, Optimization, 2011, 60(4), 531-536Google Scholar

[32] Verma R. U., General class of implicit variational inclusions and graph convergence on A-maximal relaxed monotonicity, J. Optim. Theory Appl., 2012, 155(1), 196-214Google Scholar

[33] Xu B., Iterative schemes for generalized implicit quasi variational inclusions, Nonlinear Funct. Anal. Appl., 2002, 7(2), 199- 211Google Scholar

[34] Zou Y. Z., Huang N. J., A new system of variational inclusions involving H(·; ·)-accretive operator in Banach spaces, Appl. Math. Comput., 2009, 212(1), 135-144Web of ScienceGoogle Scholar

[35] Akram M., Chen J.-W., Dilshad M., Generalized Yosida approximation operators with an application to a system of Yosida inclusions, J. Nonlinear Funct. Anal., 2018, Article id 17Google Scholar

[36] Aubin J. P., Frankowska H., Set-Valued Analysis, Birkhäuser, Cambridge, MA, 1990Google Scholar

[37] Bynum W. L., Weak parallelogram laws for Banach spaces, Canad. Math. Bull., 1976, 19(3), 269-275CrossrefGoogle Scholar

[38] Giles J. R., Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 1967, 129, 436-446Google Scholar

[39] Lumer G., Semi inner product spaces, Trans. Am. Math. Soc., 1961, 100, 29-43Google Scholar

[40] Nadler S. B., Multivalued contraction mappings, Pacific J. Math., 1969, 30(2), 475-488Google Scholar

[41] Rockafellar R. T., Wets R. J. B., Variational Analysis, Springer, Berlin, 1998Google Scholar

[42] Xu H. K., Inequalities in Banach spaces with applications, Nonlinear Anal. TMA, 1991, 16(12), 1127-1138.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.