[1] Koyunbakan H., Inverse nodal problem for p−Laplacian energy-dependent Sturm-Liouville equation, Bound. Value Probl., 2013, 2013:272, 1-8Google Scholar

[2] Yang C. F., Yang X. P., Ambarzumyan’s theoremwith eigenparameter in the boundary conditions, ActaMath. Sci., 2011, 31(4), 1561-1568Google Scholar

[3] McLeod J. B., The distribution of the eigenvalues for the Hydrogen atom and similar cases, Proc. London Math. Soc., 1961, 3(1), 139-158CrossrefGoogle Scholar

[4] Willson R. W., Peirce B. O., Table of the first forty roots of the Bessel equation J0(x) = 0 with the corresponding values of J1(x), Bull. Amer. Math. Society., 1897, 3(4), 153-155Google Scholar

[5] Chessin A., Note on the general solution of the Bessel’s equation, Amer. J. Math., 1894, 16(2), 186-187Google Scholar

[6] Stashevskaya V. V., On inverse problem of spectral analysis for a class of differential equations, Dokl. Akad. Nauk SSSR., 1953, 93, 409-411Google Scholar

[7] Gasymov M. G., Determination of a Sturm-Liouville equationwith a singularity by two spectra, Dokl. Akad. Nauk SSSR., 1965, 161(2), 274-276 (in Russian); Engl. transl.: Soviet Math. Dokl. 1965, 6, 396-399Google Scholar

[8] Pöschel J., Trubowitz E., Inverse spectral theory, (Pure and Applied Mathematics), 130, Academic Press, Orlando, FL, 1987Google Scholar

[9] Guillot J. C., Ralston J. V., Inverse spectral theory for a singular Sturm-Liouville operator on [0, 1], J. Differential Equations, 1988, 76(2), 353-373Web of ScienceGoogle Scholar

[10] Serier F., The inverse spectral problem for radial Schrödinger operator on [0, 1], J. Differential Equations, 2007, 235(1), 101-126Google Scholar

[11] Carlson R., Inverse spectral theory for some singular Sturm-Liouville problems, J. Differential Equations, 1993, 106(1), 121-140Google Scholar

[12] Zhornitskaya L. A., Serov V. S., Inverse eigenvalue problems for a singular Sturm-Liouville operator on (0, 1), Inverse Problems, 1994, 10(4), 975-987Google Scholar

[13] Carlson R., A Borg-Levinson theorem for Bessel operators, Pacific J. Math., 1997, 177(1), 1-26Google Scholar

[14] Andersson L. E., Inverse eigenvalue problems with discontinuous coeflcients, Inverse Problems, 1988, 4(2), 353-397CrossrefGoogle Scholar

[15] Marchenko V. A., Sturm-Liouville operators and their applications, Naukova Dumka Publ., Kiev, 332 p. 1977 (in Russian); Engl. transl.: Birkhäuser Verlag, Basel, 1986Google Scholar

[16] Titchmarsh E. C., Eigenfunction expansions associated with second order differential equations: I, Clarendon Press, Oxford, 1962Google Scholar

[17] Topsakal N., Amirov R., Inverse problem for Sturm-Liouville operators with Coulomb potential which have discontinuity conditions inside an interval, Math. Phys. Anal. Geom., 2010, 13(1), 29-46Web of ScienceCrossrefGoogle Scholar

[18] Levitan B. M., Inverse Sturm-Liouville problems, Netherland, VNU Science Press, 1987Google Scholar

[19] Yurko V., Inverse problems for Bessel type differential equations on noncompact graphs using spectral data, Inverse Problems, 2011, 27(4), 045002Web of ScienceGoogle Scholar

[20] Koyunbakan H., Panakhov E. S., Solution of a discontinuous inverse nodal problem on a finite interval, Math. Comput. Model., 2006, 44(1-2), 204-209CrossrefGoogle Scholar

[21] Yilmaz E., Koyunbakan H., Some Ambarzumyan type theorems for Bessel operator on a finite interval, Differ. Equ. Dyn. Syst., 2016, 1-7Google Scholar

[22] Bairamov E., Aygar Y., Karslıoglu D., Scattering analysis and spectrum of discrete Schrödinger equations with transmission conditions, Filomat, 2017, 31(17), 5391-5399Google Scholar

[23] McLaughlin J. R., Inverse spectral theory using nodal points as data-a uniqueness result, J. Differential Equations, 1988, 73(2), 354-362Google Scholar

[24] Hald O. H., McLaughlin J. R., Solution of inverse nodal problems, Inverse Problems, 1989, 5(3), 307-347CrossrefGoogle Scholar

[25] Law C. K., Yang C. F., Reconstructing the potential function and its derivatives using nodal data, Inverse Problems, 1998, 14(2), 299-312Google Scholar

[26] Yang C. F., Yang X. P., Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter, Inverse Probl. Sci. Eng., 2011, 19(7), 951-961CrossrefWeb of ScienceGoogle Scholar

[27] Browne P. J., Sleeman B. D., Inverse nodal problems for Sturm-Liouville equationswith eigenparameter-dependent boundary conditions, Inverse Problems, 1996, 12(4), 377-381Google Scholar

[28] Ozkan A. S., Keskin B., Inverse nodal problems for Sturm-Liouville equation with eigenparameter-dependent boundary and jump conditions, Inverse Probl. Sci. Eng., 2015, 23(8), 1306-1312Web of ScienceGoogle Scholar

[29] Chen H. Y., On generalized trigonometric functions, Master of Science, National Sun Yat-sen University, Kaohsiung, Taiwan, 2009Google Scholar

[30] Law C. K., Lian W. C., Wang W. C., The inverse nodal problem and the Ambarzumyan problem for the p−Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2009, 139(6), 1261-1273Google Scholar

[31] Wang W. C., Cheng Y. H., Lian W. C., Inverse nodal problems for the p−Laplacian with eigenparameter dependent boundary conditions, Math. Comput. Model., 2011, 54 (11-12), 2718-2724Web of ScienceGoogle Scholar

[32] Wang W. C., Direct and inverse problems for one dimensional p−Laplacian operators, PhD Thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, 2010Google Scholar

[33] Elbert A., On the half-linear second order differential equations, Acta Math. Hungar., 1987, 49(3-4), 487-508Google Scholar

[34] Binding P., Drábek P., Sturm-Liouville theory for the p−Laplacian, Studia Sci. Math. Hungar., 2003, 40(4), 373-396Google Scholar

[35] Pinasco J. P., Lower bounds for eigenvalues of the one-dimensional p−Laplacian, Abstr. Appl. Anal., 2004, 2004(2), 147-153Google Scholar

[36] Brown B. M., ReichelW., Eigenvalues of the radially symmetric p−Laplacian in Rn, J. Lond.Math. Soc., 2004, 69(3), 657-675Google Scholar

[37] Gulsen T., Yilmaz E., Koyunbakan H., Inverse nodal problem for p−Laplacian Dirac system, Math. Methods Appl. Sci., 2017, 40(7), 2329-2335Google Scholar

[38] Yantır A., Oscillation theory for second order differential equations and dynamic equations on time scales, Master of Science, Izmir institue of Technology, Izmir, 2004.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.