[1] Ulam S. M., A Collection of Mathematical Problems, Interscience Pulb., New York, 1960Google Scholar

[2] Hyers D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 1941, 27(4), 222–224CrossrefGoogle Scholar

[3] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297–300Google Scholar

[4] Jung S. M., Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011Google Scholar

[5] Miheț D., Radu V., On the stability of the additive Cauchy functional equation in random normed spaces, J.Math. Anal. Appl., 2008, 343, 567–572Web of ScienceGoogle Scholar

[6] Mirzavaziri M., Moslehian M. S., A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 2006, 37(3), 361–376CrossrefGoogle Scholar

[7] Moslehian M. S., Rassias Th. M., Orthogonal stability of additive type equations, Aequationes Math., 2007, 73(3), 249–259Google Scholar

[8] Najati A., On the stability of a quartic functional equation, J. Math. Anal. Appl., 2008, 340(1), 569–574Google Scholar

[9] Park C., Cho Y. J., Kenary H. A., Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl., 2012, 14(1), 526–535Google Scholar

[10] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4, 91–96Google Scholar

[11] Saadati R., Park C., Non-Archimedean *L*–fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 2010, 60(8), 2488–2496Google Scholar

[12] Kannappan Pl., Functional Equations and Inequalities with Applications, Springer, 2009Web of ScienceGoogle Scholar

[13] Lee Y. H., Jung S.-M., Rassias M. Th., Uniqueness theorems on functional inequalities concerning cubic–quadratic–additive equation, J. Math. Inequal, 2018, 12(1), 43–61Web of ScienceGoogle Scholar

[14] Abdollahpour M. R., Aghayari R., Rassias M. Th., Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 2016, 437(1), 605–612Web of ScienceGoogle Scholar

[15] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations, Dynamic Syst. Appl., 1997, 6, 541–566Google Scholar

[16] Yang X., Chang L., Liu G., Shen G., Stability of functional equantions in (*n*, *β*)–normed spaces, J. Inequal. Appl., 2015, 2015:112Google Scholar

[17] Park C., Jang S. Y., Lee J. R., Shin D. Y., On the stability of an AQCQ–functional equantion in radom normed spaces, J. Inequal. Appl., 2011, 2011:34Google Scholar

[18] Hensel K., Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Dtsch. Math.-Ver., 1897, 6, 83–88Google Scholar

[19] Katsaras A. K., Beloyiannis A., Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., 1999, 6(1), 33–44Google Scholar

[20] Khrennikov A. Y., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997Google Scholar

[21] Nyikos P. J., On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl., 1999, 91(1), 1–23CrossrefGoogle Scholar

[22] Moslehian M. S., Sadeghi Gh., A Mazur–Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 2008, 69(10), 3405–3408Google Scholar

[23] Gordji M. E., Gharetapeh S. K., Park C., Zolfaghari S., Stability of an additive–cubic–quartic functional equations, Adv. Difference Equ., 2009, 2009:395693Google Scholar

[24] Gordji M. E., Abbaszadeh S., Park C., On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl., 2009, 2009:153084Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.