Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Demonstratio Mathematica

Editor-in-Chief: Vetro, Calogero


Covered by:
Web of Science - Emerging Sources Citation Index
Scopus
MathSciNet


CiteScore 2018: 0.47
SCImago Journal Rank (SJR) 2018: 0.265
Source Normalized Impact per Paper (SNIP) 2018: 0.714

Mathematical Citation Quotient (MCQ) 2018: 0.17

ICV 2017: 121.78

Open Access
Online
ISSN
2391-4661
See all formats and pricing
More options …
Volume 52, Issue 1

Issues

Stability of an AQCQ functional equation in non-Archimedean (n, β)-normed spaces

Yachai Liu
  • College of Mathematics and Information Science, Hebei Normal University, and Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiuzhong Yang
  • Corresponding author
  • College of Mathematics and Information Science, Hebei Normal University, and Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guofen Liu
  • College of Mathematics and Information Science, Hebei Normal University, and Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-22 | DOI: https://doi.org/10.1515/dema-2019-0009

Abstract

In this paper, we adopt direct method to prove the Hyers-Ulam-Rassias stability of an additivequadratic-cubic-quartic functional equation

f(x+2y)+f(x2y)=4f(x+y)+4f(xy)6f(x)+f(2y)+f(2y)4f(y)4f(y)

in non-Archimedean (n, β)-normed spaces.

Keywords: non-Archimedean (n, β)-normed space; Hyers-Ulam-Rassias stability; AQCQ functional equation

MSC 2010: 39B82; 39B72

References

  • [1] Ulam S. M., A Collection of Mathematical Problems, Interscience Pulb., New York, 1960Google Scholar

  • [2] Hyers D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 1941, 27(4), 222–224CrossrefGoogle Scholar

  • [3] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297–300Google Scholar

  • [4] Jung S. M., Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011Google Scholar

  • [5] Miheț D., Radu V., On the stability of the additive Cauchy functional equation in random normed spaces, J.Math. Anal. Appl., 2008, 343, 567–572Web of ScienceGoogle Scholar

  • [6] Mirzavaziri M., Moslehian M. S., A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 2006, 37(3), 361–376CrossrefGoogle Scholar

  • [7] Moslehian M. S., Rassias Th. M., Orthogonal stability of additive type equations, Aequationes Math., 2007, 73(3), 249–259Google Scholar

  • [8] Najati A., On the stability of a quartic functional equation, J. Math. Anal. Appl., 2008, 340(1), 569–574Google Scholar

  • [9] Park C., Cho Y. J., Kenary H. A., Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl., 2012, 14(1), 526–535Google Scholar

  • [10] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4, 91–96Google Scholar

  • [11] Saadati R., Park C., Non-Archimedean L–fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 2010, 60(8), 2488–2496Google Scholar

  • [12] Kannappan Pl., Functional Equations and Inequalities with Applications, Springer, 2009Web of ScienceGoogle Scholar

  • [13] Lee Y. H., Jung S.-M., Rassias M. Th., Uniqueness theorems on functional inequalities concerning cubic–quadratic–additive equation, J. Math. Inequal, 2018, 12(1), 43–61Web of ScienceGoogle Scholar

  • [14] Abdollahpour M. R., Aghayari R., Rassias M. Th., Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 2016, 437(1), 605–612Web of ScienceGoogle Scholar

  • [15] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations, Dynamic Syst. Appl., 1997, 6, 541–566Google Scholar

  • [16] Yang X., Chang L., Liu G., Shen G., Stability of functional equantions in (n, β)–normed spaces, J. Inequal. Appl., 2015, 2015:112Google Scholar

  • [17] Park C., Jang S. Y., Lee J. R., Shin D. Y., On the stability of an AQCQ–functional equantion in radom normed spaces, J. Inequal. Appl., 2011, 2011:34Google Scholar

  • [18] Hensel K., Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Dtsch. Math.-Ver., 1897, 6, 83–88Google Scholar

  • [19] Katsaras A. K., Beloyiannis A., Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., 1999, 6(1), 33–44Google Scholar

  • [20] Khrennikov A. Y., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997Google Scholar

  • [21] Nyikos P. J., On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl., 1999, 91(1), 1–23CrossrefGoogle Scholar

  • [22] Moslehian M. S., Sadeghi Gh., A Mazur–Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 2008, 69(10), 3405–3408Google Scholar

  • [23] Gordji M. E., Gharetapeh S. K., Park C., Zolfaghari S., Stability of an additive–cubic–quartic functional equations, Adv. Difference Equ., 2009, 2009:395693Google Scholar

  • [24] Gordji M. E., Abbaszadeh S., Park C., On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl., 2009, 2009:153084Web of ScienceGoogle Scholar

About the article

Received: 2018-06-28

Accepted: 2019-01-17

Published Online: 2019-03-22

Published in Print: 2019-01-01


Citation Information: Demonstratio Mathematica, Volume 52, Issue 1, Pages 130–146, ISSN (Online) 2391-4661, DOI: https://doi.org/10.1515/dema-2019-0009.

Export Citation

© 2019 Yachai Liu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in