Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Dependence Modeling

Ed. by Puccetti, Giovanni


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH

Open Access
Online
ISSN
2300-2298
See all formats and pricing
More options …

Forecasting time series with multivariate copulas

Clarence Simard / Bruno Rémillard
Published Online: 2015-05-28 | DOI: https://doi.org/10.1515/demo-2015-0005

Abstract

In this paper we present a forecasting method for time series using copula-based models for multivariate time series. We study how the performance of the predictions evolves when changing the strength of the different possible dependencies, as well as the structure of the dependence. We also look at the impact of the marginal distributions. The impact of estimation errors on the performance of the predictions is also considered. In all the experiments, we compare predictions from our multivariate method with predictions from the univariate version which has been introduced in the literature recently. To simplify implementation, a test of independence between univariate Markovian time series is proposed. Finally, we illustrate the methodology by a practical implementation with financial data.

Keywords: Copulas; time series; forecasting; realized volatility

MSC:: 62M20

References

  • [1] Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom., 44(2), 182–198. Google Scholar

  • [2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control, AC-19(6), 716–723. Google Scholar

  • [3] Andersen, T., Bollerslev, T., and Diebold, F. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Rev. Econ. Stat., 89(4), 701–720. CrossrefGoogle Scholar

  • [4] Andersen, T., Bollerslev, T., Diebold, F., and Labys, P. (2001). The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc., 96(453), 42–55. CrossrefGoogle Scholar

  • [5] Beare, B. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410. Web of ScienceCrossrefGoogle Scholar

  • [6] Beare, B. K. and Seo, J. (2015). Vine copula specifications for stationary multivariate Markov chains. J. Time. Ser. Anal., 36, 228–246. Web of ScienceCrossrefGoogle Scholar

  • [7] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer-Verlag, New York, second edition. Google Scholar

  • [8] Bush, T., Christensen, B., and M.Ø., N. (2011). The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. J. Econometrics, 60(1), 48–57. CrossrefGoogle Scholar

  • [9] Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric model time series models. J. Econometrics, 130(2), 307–335. Google Scholar

  • [10] Corsi, F. (2009). A simple approximate long-memory model of realized volatility. J. Financ. Econ., 7(2), 174–196. Google Scholar

  • [11] Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. J. Bus. Econom. Statist., 13(3), 253–263. Google Scholar

  • [12] Duchesne, P., Ghoudi, K., and Rémillard, B. (2012). On testing for independence between the innovations of several time series. Canad. J. Statist., 40(3), 447–479. Google Scholar

  • [13] Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Economet. Theor., 11(1),122–150. CrossrefGoogle Scholar

  • [14] Erhardt, T. M., Czado, C., and Schepsmeier, U. (2014). R-vine models for spatial time series with an application to daily mean temperature. Biometrics, to appear. DOI:10.1111/biom.12279 Web of ScienceCrossrefGoogle Scholar

  • [15] Fang, H.-B., Fang, K.-T., and Kotz, S. (2002). The meta-elliptical distributions with given marginals. J. Multivariate Anal., 82(1), 1–16. CrossrefGoogle Scholar

  • [16] Genest, C., Gendron, M., and Bourdeau-Brien, M. (2009). The advent of copula in finance. Europ. J. Financ., 15(7-8), 609–618. Google Scholar

  • [17] Genest, C. and Rémillard, B. (2004). Tests of independence or randomness based on the empirical copula process. Test, 13(2), 335–369. CrossrefGoogle Scholar

  • [18] Ghoudi, K. and Rémillard, B. (2004). Empirical processes based on pseudo-observations. II. The multivariate case. In Asymptotic Methods in Stochastics, 381–406. Amer. Math. Soc., Providence, RI. Google Scholar

  • [19] Kurowicka, D. and Joe, H., editors (2011). Dependence Modeling. Vine Copula Handbook. World Scientific, Hackensack, NJ. Google Scholar

  • [20] Martens, M. and van Dijk, D. (2006). Measuring volatility with the realized range. J. Econometrics, 138(1), 181–207. Web of ScienceGoogle Scholar

  • [21] Nelsen, R. B. (1999). An introduction to copulas. Springer-Verlag, New York. Google Scholar

  • [22] Rémillard, B. (2013). Statistical Methods For Financial Engineering. CRC Press, Boca Raton, FL. Google Scholar

  • [23] Rémillard, B., Papageorgiou, N., and Soustra, F. (2012). Copula-based semiparametric models for multivariate time series. J. Multivariate Anal., 110, 30–42. Web of ScienceCrossrefGoogle Scholar

  • [24] Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Berlin. Google Scholar

  • [25] Smith, M. (2015). Copula modelling of dependence in multivariate time series. Int. J. Forecasting, to appear. DOI:10.1016/j.ijforecast.2014.04.003 Web of ScienceCrossrefGoogle Scholar

  • [26] Sokolinskiy, O. and Van Dijk, D. (2011). Forecasting volatility with copula-based time series models. Technical report, Tinbergen Institute Discussion Paper. Google Scholar

  • [27] Soustra, F. (2006). Pricing of synthetic CDO tranches, analysis of base correlations and an introduction to dynamic copulas. Master thesis, HEC Montréal. Google Scholar

  • [28] Zhang, L., Mykland, P., and Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc., 100(472), 1394–1414. CrossrefGoogle Scholar

  • [29] Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. J. Bus. Econom. Statist., 14(1), 45–52. Google Scholar

About the article


Received: 2014-08-17

Accepted: 2015-05-15

Published Online: 2015-05-28


Citation Information: Dependence Modeling, Volume 3, Issue 1, ISSN (Online) 2300-2298, DOI: https://doi.org/10.1515/demo-2015-0005.

Export Citation

© 2015 Clarence Simard, Bruno Rémillard. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Qing Xu, Bo Li, Matti Maltamo, Timo Tokola, and Zhengyang Hou
Forest Ecology and Management, 2019, Volume 434, Page 205

Comments (0)

Please log in or register to comment.
Log in