Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Dependence Modeling

Ed. by Puccetti, Giovanni

1 Issue per year


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH

Open Access
Online
ISSN
2300-2298
See all formats and pricing
More options …

Measuring association via lack of co-monotonicity: the LOC index and a problem of educational assessment

Danang Teguh Qoyyimi
  • Department of Mathematics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; and Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ricardas Zitikis
  • Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-18 | DOI: https://doi.org/10.1515/demo-2015-0006

Abstract

Measuring association, or the lack of it, between variables plays an important role in a variety of research areas, including education,which is of our primary interest in this paper. Given, for example, student marks on several study subjects, we may for a number of reasons be interested in measuring the lack of comonotonicity (LOC) between the marks, which rarely follow monotone, let alone linear, patterns. For this purpose, in this paperwe explore a novel approach based on a LOCindex,which is related to, yet substantially different from, Eckhard Liebscher’s recently suggested coefficient of monotonically increasing dependence. To illustrate the new technique,we analyze a data-set of student marks on mathematics, reading and spelling.

Keywords: association; co-monotonicity; Liebscher coefficient; LOC index; education; performance evaluation

MSC:: 62H20, 62P15

References

  • [1] Bebbington, M., Lai, C. D. and Zitikis, R. (2011). Modelling deceleration in senescent mortality. Math. Popul. Stud. 18(1), 18–37. Web of ScienceCrossrefGoogle Scholar

  • [2] Brazauskas, V., Jones, B. L. and Zitikis, R. (2015). Trends in disguise. Ann. Actuar. Sci. 9(1), 58–71. CrossrefGoogle Scholar

  • [3] Carlier, G. and Dana, R. A. (2003). Pareto efficient insurance contracts when the insurer’s cost function is discontinuous. Econom. Theory 21(4), 871–893. Google Scholar

  • [4] Carlier, G. and Dana, R. (2005). Rearrangement inequalities in non-convex insurance models. J.Math. Econom. 41(4-5), 485– 503. Google Scholar

  • [5] Carlier, G. and Dana, R. (2008). Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities. Econom. Theory 36(2), 189–223. Web of ScienceGoogle Scholar

  • [6] Carlier, G. and Dana, R. (2011). Optimal demand for contingent claims when agents have lawinvariant utilities.Math. Finance 21(2), 169–201. Web of ScienceGoogle Scholar

  • [7] Chernozhukov, V., Fernandez-Val, I. and Galichon, A. (2009). Improving point and interval estimators of monotone function by rearrangement. Biometrika 96, 559–575. CrossrefWeb of ScienceGoogle Scholar

  • [8] Chernozhukov, V., Fernandez-Val, I. and Galichon, A. (2010). Quantile and probability curveswithout crossing. Econometrica 78(3), 1093–1125. Web of ScienceCrossrefGoogle Scholar

  • [9] Dana, R. and Scarsini, M. (2007). Optimal risk sharing with background risk. J. Econom. Theory 133(1), 152–176. Google Scholar

  • [10] Denneberg, D. (1994). Non-additive Measure and Integral. Kluwer Academic Publishers Group, Dordrecht. Google Scholar

  • [11] Dhaene, J., Linders, D., Schoutens,W. and Vyncke, D. (2012). The herd behavior index: a new measure for the implied degree of co-movement in stock markets. Insurance Math. Econom. 50(3), 357–370. Google Scholar

  • [12] Dhaene J., Linders D., Schoutens W. and Vyncke D. (2014). A multivariate dependence measure for aggregating risks. J. Comput. Appl. Math. 263(1), 78–87. Web of ScienceCrossrefGoogle Scholar

  • [13] Dhaene, J., Vanduffel, S., Goovaerts, M. J., Kaas, R., Tang, Q. and Vyncke, D. (2006). Risk measures and comonotonicity: a review. Stoch. Models 22(4), 573–606. Google Scholar

  • [14] Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87(420), 998–1004. CrossrefGoogle Scholar

  • [15] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall, London. Google Scholar

  • [16] Fan, J. and Gijbels, I. (2000). Local polynomial fitting. In: Schimek, M.G. (ed.), Smoothing and Regression: Approaches, Computation, and Application. Wiley, New York, 229–276. Google Scholar

  • [17] Furman, E. and Zitikis, R. (2008). Weighted risk capital allocations. Insurance Math. Econom. 43(2), 263–269. Google Scholar

  • [18] Gavrilov, L. A. and Gavrilova, N. S. (1991). The Biology of Life Span: A Quantitative Approach. Harwood Academic Publishers, New York. Google Scholar

  • [19] Hardy, G. H., Littlewood, J.E. and Pólya, G. (1988). Inequalities (2nd edition). Cambridge University Press, Cambridge. Google Scholar

  • [20] He, X. and Zhou, X. (2011). Portfolio choice via quantile. Math. Finance 21(2), 203–231. Web of ScienceGoogle Scholar

  • [21] Jaworski, P., Durante, F. and Härdle, W. (2013). Copulae in Mathematical and Quantitative Finance. Springer, Berlin. Google Scholar

  • [22] Jaworski, P., Durante, F., Härdle, W. and Rychlik, T. (2010). Copula Theory and Its Applications. Springer, Heidelberg. Google Scholar

  • [23] Jin, H. and Zhou, X. (2008). Behavioral portfolio selection in continuous time. Math. Finance 18(3), 385–426. Web of ScienceCrossrefGoogle Scholar

  • [24] Koch, I. and De Schepper, A. (2011). Measuring comonotonicity in m-dimensional vectors. ASTIN Bull. 41(1), 191–213. Web of ScienceGoogle Scholar

  • [25] Koenker, R. (2005). Quantile Regression. Cambridge University Press, Cambridge. Google Scholar

  • [26] Koenker, R. (2015). quantreg: Quantile Regression. R package version 5.11, URL http://cran.rproject. org/web/packages/quantreg/index.html Google Scholar

  • [27] Lai, C. D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York. Google Scholar

  • [28] Lehmann, E. L. (1966). Some concepts of dependence. Ann. Math. Statist. 37, 1137–1153. CrossrefGoogle Scholar

  • [29] Li, H. and Li, X. (2013). Stochastic Orders in Reliability and Risk: in Honor of Professor Moshe Shaked. Springer, New York. Google Scholar

  • [30] Liebscher, E. (2014). Copula-based dependence measures. Depend. Model. 2(1), 49–64. Google Scholar

  • [31] Nelsen, R. B. (2006). An Introduction to Copulas (2nd Edition). Springer, New York. Google Scholar

  • [32] Panik, M. J. (2014). Growth Curve Modeling: Theory and Applications. John Wiley & Sons, New York. Google Scholar

  • [33] Pearl, J. (2009). Causality: Models, Reasoning, and Inference (2nd Edition). Cambridge University Press, New York. Google Scholar

  • [34] Qoyyimi, D. T. and Zitikis, R. (2014). Measuring the lack of monotonicity in functions. Math. Sci. 39(2), 107–117. Google Scholar

  • [35] Quiggin, J. (1982). A theory of anticipated utility. J. Econom. Behav. Organ. 3(4), 323–343. CrossrefGoogle Scholar

  • [36] Quiggin, J. (2012). Generalized Expected Utility Theory: The Rank Dependent Model. Springer Science & Business Media. Google Scholar

  • [37] R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. Google Scholar

  • [38] Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc. 90(432), 1257–1270. CrossrefGoogle Scholar

  • [39] Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22(3), 1346–1370. CrossrefGoogle Scholar

  • [40] Rüschendorf, L. (1983). Solution of a statistical optimization problem by rearrangement methods. Metrika 30(1), 55–61. CrossrefGoogle Scholar

  • [41] Scarsini, M. (1984). On measures of concordance. Stochastica 8(3), 201–218. Google Scholar

  • [42] Schweizer, B. and Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. Ann. Statist. 9(4), 879–885. CrossrefGoogle Scholar

  • [43] Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. John Wiley & Sons, New York. Google Scholar

  • [44] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York. Google Scholar

  • [45] Thorndike, R. M. and Thorndike-Christ, T. (2010). Measurement and Evaluation in Psychology and Education (8th Edition). Pearson Prentice Hall. Google Scholar

  • [46] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman & Hall, London. Google Scholar

  • [47] Wand, M. P. and Ripley, B. (2014). KernSmooth: Functions for Kernel Smoothing. R package version 2.23-13, URL http://CRAN.R-project.org/package=KernSmooth. Google Scholar

  • [48] Yu, K. and Jones, M. C. (1997). A comparison of local constant and local linear regression quantile estimator. Comput. Statist. Data Anal. 25(2), 159–166. Google Scholar

About the article


Received: 2014-04-16

Accepted: 2015-06-06

Published Online: 2015-06-18


Citation Information: Dependence Modeling, Volume 3, Issue 1, ISSN (Online) 2300-2298, DOI: https://doi.org/10.1515/demo-2015-0006.

Export Citation

© 2015 Danang Teguh Qoyyimi and Ricardas Zitikis. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Youri Davydov and Ričardas Zitikis
Modern Stochastics: Theory and Applications, 2017, Volume 0, Number 0, Page 1
[2]
Lingzhi Chen and Ričardas Zitikis
Education Sciences, 2017, Volume 7, Number 4, Page 77

Comments (0)

Please log in or register to comment.
Log in