Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Dependence Modeling

Ed. by Puccetti, Giovanni

Covered by:

Open Access
See all formats and pricing
More options …

A Journey from Statistics and Probability to Risk Theory An interview with Ludger Rüschendorf

Fabrizio Durante / Giovanni Puccetti / Matthias Scherer
Published Online: 2015-10-29 | DOI: https://doi.org/10.1515/demo-2015-0013


  • [1] Andersen, P. K., O. Borgan, R. D. Gill, and N. Keiding (2012). Statistical Models Based on Counting Processes. Springer- Verlag, New York. Google Scholar

  • [2] Bickel, P. J., Y. Ritov, and J. A. Wellner (1991). Efficient estimation of linear functionals of a probability measure P with known marginal distributions. Ann. Statist. 19(3), 1316–1346. CrossrefGoogle Scholar

  • [3] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417. Google Scholar

  • [4] Bruss, F. T. and L. Rüschendorf (2010). On the perception of time. Gerontology 56(4), 361–370. CrossrefGoogle Scholar

  • [5] Dall’Aglio, G., S. Kotz, and G. Salinetti (Eds.) (1991). Advances in Probability Distributions with Given Marginals. Kluwer Academic Publishers Group, Dordrecht. Google Scholar

  • [6] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci.(5) 65(6), 274–292. Google Scholar

  • [7] Deming, W. E. and F. F. Stephan (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444. CrossrefGoogle Scholar

  • [8] Döhler, S. and L. Rüschendorf (2003). Nonparametric estimation of regression functions in point process models. Stat. Inference Stoch. Process. 6(3), 291–307. Google Scholar

  • [9] Durante, F. and C. Sempi (2010). Copula theory: an introduction. In Copula Theory and Its Applications, Volume 198 of Lecture Notes in Statistics, pp. 3–31. Springer, Berlin. Google Scholar

  • [10] Embrechts, P. and G. Puccetti (2006). Bounds for functions of dependent risks. Finance Stoch. 10(3), 341–352. Google Scholar

  • [11] Embrechts, P., G. Puccetti, and L. Rüschendorf (2013). Model uncertainty and VaR aggregation. J. Bank. Financ. 37(8), 2750– 2764. Web of ScienceCrossrefGoogle Scholar

  • [12] Fermanian, J.-D., D. Radulovic, M. Wegkamp (2004). Weak convergence of empirical copula processes. Bernoulli 10(5), 847–860. CrossrefGoogle Scholar

  • [13] Genest, C., J.-F. Quessy, B. Rémillard (2007). Asymptotic local efficiency of Cramér-von Mises tests for multivariate independence. Ann. Statist. 35(1), 166–191. CrossrefGoogle Scholar

  • [14] Goll, T. and L. Rüschendorf (2001). Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5(4), 557–581. Google Scholar

  • [15] Gray, L. and D. Wilson (1980). Nonnegative factorization of positive semidefinite nonnegative matrices. Linear Algebra Appl. 31, 119 – 127. Google Scholar

  • [16] Grenander, U. (1968). Probabilities on Algebraic Structures (2nd edition). Almqvist & Wiksell, Stockholm and John Wiley, New York. Google Scholar

  • [17] Hall, P. (1935). On representatives of subsets. J. London Math. Soc. s1-10(1), 26–30. Google Scholar

  • [18] Hardy, G. H., J. E. Littlewood, and G. Pólya (1952). Inequalities (2nd edition). Cambridge University Press, Camdridge. Google Scholar

  • [19] Holtrode, R. and L. Rüschendorf (1993). Differentiablity of point process models and asymptotic efficiency of differentiable functionals. Statistics 24(1), 17–42. CrossrefGoogle Scholar

  • [20] Iosifescu, M. and P. Tautu (1973). Stochastic Processes and Applications in Biology and Medicine. Springer-Verlag, Berlin- New York. Google Scholar

  • [21] Karlin, S. and J. McGregor (1964). Direct product branching processes and related Markov chains. Proc. Nat. Acad. Sci. U.S.A. 51, 598–602. CrossrefGoogle Scholar

  • [22] Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67(4), 399–432. CrossrefGoogle Scholar

  • [23] Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114, 953–956. Google Scholar

  • [24] Linnik, Y. V. (1975). Problems of Analytical Statistics. Statistical Publishing Society, Calcutta. Google Scholar

  • [25] Mainik, G., G. Mitov, and L. Rüschendorf (2015). Portfolio optimization for heavy-tailed assets: Extreme risk index vs. Markowitz. J. Empirical Finance 32, 115–134. Google Scholar

  • [26] Mainik, G. and L. Rüschendorf (2010). Onoptimal portfolio diversificationwith respect to extreme risks. Finance Stoch. 14(4), 593–623. Google Scholar

  • [27] Moore, D. S. and M. C. Spruill (1975). Unified large-sample theory of general chi-squared statistics for tests of fit. Ann. Statist. 3, 599–616. Google Scholar

  • [28] Pitt, L. D. (1982). Positively correlated normal variables are associated. Ann. Probab. 10, 496–499. CrossrefGoogle Scholar

  • [29] Puccetti, G. and L. Rüschendorf (2012). Computation of sharp bounds on the distribution of a function of dependent risks. J. Comput. Appl. Math. 236(7), 1833–1840. Web of ScienceCrossrefGoogle Scholar

  • [30] Rachev, S. T. and L. Rüschendorf (1998). Mass Transportation Problems. Vol. I–II. Springer, New York. Google Scholar

  • [31] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4, 912–923. CrossrefGoogle Scholar

  • [32] Rüschendorf, L. (1981a). Sharpness of Fréchet bounds. Z. Wahrsch. Verw. Gebiete 57(2), 293–302. CrossrefGoogle Scholar

  • [33] Rüschendorf, L. (1981b). Stochastically ordered distributions and monotonicity of the OC-function of sequential probability ratio tests. Math. Operationsforsch. Statist. Ser. Statist. 12(3), 327–338. Google Scholar

  • [34] Rüschendorf, L. (1982). Random variables with maximum sums. Adv. Appl. Probab. 14, 623–632. CrossrefGoogle Scholar

  • [35] Rüschendorf, L. (1991). Fréchet-bounds and their applications. In Advances in Probability Distributions with Given Marginals, Volume 67, pp. 151–187. Dordrecht: Kluwer Acad. Publ. Google Scholar

  • [36] Rüschendorf, L. (1995). Convergence of the iterative proportional fitting procedure. Ann. Statist. 23, 1160–1174. CrossrefGoogle Scholar

  • [37] Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg. Google Scholar

  • [38] Rüschendorf, L. (2014). Mathematische Statistik. Springer, Berlin. Google Scholar

  • [39] Rüschendorf, L. and S. T. Rachev (1990). A characterization of random variables with minimum L2-distance. J. Multivariate Anal. 32(1), 48–54. CrossrefGoogle Scholar

  • [40] Rüschendorf, L., B. Schweizer, and M. Taylor (Eds.) (1996). Distributions with FixedMarginals and Related Topics, Hayward, CA. Inst. Math. Statist. Google Scholar

  • [41] Rüschendorf, L. and W. Thomsen (1998). Closedness of sum spaces and the generalized ’Schrödinger problem’. Theory Probab. Appl. 42(3), 483–494. Google Scholar

  • [42] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231. Google Scholar

  • [43] Strasser, H. (1985). Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory. Walter de Gruyter & Co., Berlin. Google Scholar

  • [44] Stute, W. (1984). The oscillation behavior of empirical processes: the multivariate case. Ann. Probab. 12, 361–379. CrossrefGoogle Scholar

About the article

Received: 2015-09-17

Accepted: 2015-10-08

Published Online: 2015-10-29

Citation Information: Dependence Modeling, Volume 3, Issue 1, ISSN (Online) 2300-2298, DOI: https://doi.org/10.1515/demo-2015-0013.

Export Citation

© 2015 Fabrizio Durante et al.. This article is distributed under the terms of the Creative Commons Attribution 3.0 Public License. BY 3.0

Comments (0)

Please log in or register to comment.
Log in