Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Dependence Modeling

Ed. by Puccetti, Giovanni

1 Issue per year


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH

Mathematical Citation Quotient (MCQ) 2017: 0.10


Emerging Science

Open Access
Online
ISSN
2300-2298
See all formats and pricing
More options …

VaR bounds for joint portfolios with dependence constraints

Giovanni Puccetti
  • Corresponding author
  • Department of Economics, Management and Quantitative Methods, University of Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ludger Rüschendorf / Dennis Manko
Published Online: 2016-12-14 | DOI: https://doi.org/10.1515/demo-2016-0021

Abstract

Based on a novel extension of classical Hoeffding-Fréchet bounds, we provide an upper VaR bound for joint risk portfolios with fixed marginal distributions and positive dependence information. The positive dependence information can be assumed to hold in the tails, in some central part, or on a general subset of the domain of the distribution function of a risk portfolio. The newly provided VaR bound can be interpreted as a comonotonic VaR computed at a distorted confidence level and its quality is illustrated in a series of examples of practical interest.

Keywords: Value-at-Risk; Dependence Uncertainty; Positive Dependence; Model Risk

References

  • [1] Bernard, C., X. Jiang, and S. Vanduffel (2012). A note on ‘Improved Fréchet bounds and model-free pricing of multi-asset options’ by Tankov (2011). J. Appl. Probab. 49(3), 866–875. Google Scholar

  • [2] Bernard, C., Y. Liu, N. MacGillivray, and J. Zhang (2013). Bounds on capital requirements for bivariate risk with given marginals and partial information on the dependence. Depend. Model. 1, 37–53. Google Scholar

  • [3] Bernard, C., L. Rüschendorf, and S. Vanduffel (2014). Value-at-risk bounds with variance constraints. J. Risk Insur., in press. DOI: 10.1111/jori.12108. CrossrefGoogle Scholar

  • [4] Bernard, C., L. Rüschendorf, S. Vanduffel, and J. Yao (2015). How robust is the Value-at-Risk of credit risk portfolios? Eur. J. Finance, in press. DOI: 10.1080/1351847X.2015.1104370. CrossrefGoogle Scholar

  • [5] Bernard, C. and S. Vanduffel (2015). A new approach to assessing model risk in high dimensions. J. Bank. Financ. 58, 166–178. Web of ScienceCrossrefGoogle Scholar

  • [6] Bignozzi, V., G. Puccetti, and L. Rüschendorf (2015). Reducing model risk via positive and negative dependence assumptions. Insurance Math. Econom. 61, 17–26. Google Scholar

  • [7] Dall’Aglio, G. (1972). Fréchet classes and compatibility of distribution functions. Symp. Math. 9, 131–150. Google Scholar

  • [8] Dolati, A. and A. Dehgan Nezhad (2014). Some results on convexity and concavity of multivariate copulas. Iran. J.Math. Sci. Inform. 9(2), 87–100, 129. Google Scholar

  • [9] Durante, F. and C. Sempi (2016). Principles of Copula Theory. CRC Press, Boca Raton FL. Google Scholar

  • [10] Embrechts, P., A. Höing, and A. Juri (2003). Using copulae to bound the Value-at-Risk for functions of dependent risks. Finance Stoch. 7(2), 145–167. Google Scholar

  • [11] Embrechts, P. and G. Puccetti (2006a). Aggregating risk capital, with an application to operational risk. Geneva Risk Insur. Rev. 31(2), 71–90. Google Scholar

  • [12] Embrechts, P. and G. Puccetti (2006b). Bounds for functions of dependent risks. Finance Stoch. 10(3), 341–352. Google Scholar

  • [13] Embrechts, P. and G. Puccetti (2010). Bounds for the sum of dependent risks having overlapping marginals. J. Multivariate Anal. 101(1), 177–190. CrossrefWeb of ScienceGoogle Scholar

  • [14] Embrechts, P., G. Puccetti, and L. Rüschendorf (2013). Model uncertainty and VaR aggregation. J. Bank. Financ. 58(8), 2750–2764. CrossrefWeb of ScienceGoogle Scholar

  • [15] Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj (2014). An academic response to Basel 3.5. Risks 2(1), 25–48. Google Scholar

  • [16] Lux, T. and A. Papapantoleon (2016). Improved Fréchet–Hoeffding bounds on d-copulas and applications in model-free finance. Preprint, available at http://arxiv.org/abs/1602.08894. Google Scholar

  • [17] Manko, D. (2015). Verteilungsschranken für Portfolios von Abhängigen Risiken. Masterthesis University Freiburg. Google Scholar

  • [18] Marshall, A. W., I. Olkin, and B. C. Arnold (2011). Inequalities: Theory of Majorization and its Applications. Second edition. Springer, New York. Google Scholar

  • [19] McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative Risk Management: Concepts, Techniques, Tools. Revised Editon. Princeton University Press, Princeton. Google Scholar

  • [20] Mesfioui, M. and J.-F. Quessy (2005). Bounds on the value-at-risk for the sum of possibly dependent risks. Insurance Math. Econom. 37(1), 135–151. Google Scholar

  • [21] Nelsen, R. B. (2006). An Introduction to Copulas. Second Edition. Springer, New York. Google Scholar

  • [22] Nelsen, R. B., J. J. Quesada Molina, J. A. Rodríguez Lallena, and M. Úbeda Flores (2004). Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90(2), 348–358. CrossrefGoogle Scholar

  • [23] Puccetti, G. and L. Rüschendorf (2012a). Bounds for joint portfolios of dependent risks. Stat. Risk Model. 29(2), 107–131. Google Scholar

  • [24] Puccetti, G. and L. Rüschendorf (2012b). Computation of sharp bounds on the distribution of a function of dependent risks. J. Comput. Appl. Math. 236(7), 1833–1840. Web of ScienceCrossrefGoogle Scholar

  • [25] Puccetti, G. and L. Rüschendorf (2013). Sharp bounds for sums of dependent risks. J. Appl. Probab. 50(1), 42–53. CrossrefGoogle Scholar

  • [26] Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel (2015). Reduction of Value-at-Risk bounds via independence and variance information. Scand. Actuar. J., in press. DOI: 10.1080/03461238.2015.1119717. CrossrefGoogle Scholar

  • [27] Puccetti, G. and R. Wang (2015). Extremal dependence concepts. Stat. Science 30(4), 485–517. CrossrefWeb of ScienceGoogle Scholar

  • [28] Rachev, S. T. and L. Rüschendorf (1994). Solution of some transportation problems with relaxed or additional constraints. SIAM J. Control Optim. 32(3), 673–689. CrossrefGoogle Scholar

  • [29] Rodríguez-Lallena, J. A. and M. Úbeda-Flores (2004). Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33(4), 805–820. Google Scholar

  • [30] Rüschendorf, L. (2005). Stochastic ordering of risks, influence of dependence and a. s. construction. In N. Balakrishnan, I. G. Bairamov, and O. L. Gebizlioglu (Eds.), Advances on Models, Characterization and Applications., pp. 19–56. Chapman & Hall/CRC, Boca Raton FL. Google Scholar

  • [31] Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg. Google Scholar

  • [32] Sadooghi-Alvandi, S. M., Z. Shishebor, and H. A. Mardani-Fard (2013). Sharp bounds on a class of copulas with known values at several points. Comm. Statist. Theory Methods 42(12), 2215–2228. Google Scholar

  • [33] Scaillet, O. (2005). A Kolmogorov-Smirnov type test for positive quadrant dependence. Canad. J. Statist. 33(3), 415–427. Google Scholar

  • [34] Tankov, P. (2011). Improved Fréchet bounds and model-free pricing of multi-asset options. J. Appl. Probab. 48(2), 389–403. CrossrefGoogle Scholar

  • [35] Wang, R., L. Peng, and J. Yang (2013). Bounds for the sumof dependent risks and worst value-at-riskwith monotonemarginal densities. Finance Stoch. 17(2), 395–417. Google Scholar

About the article

Received: 2016-06-14

Accepted: 2016-10-04

Published Online: 2016-12-14


Citation Information: Dependence Modeling, Volume 4, Issue 1, ISSN (Online) 2300-2298, DOI: https://doi.org/10.1515/demo-2016-0021.

Export Citation

© 2016 Giovanni Puccetti et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniël Linders and Fan Yang
North American Actuarial Journal, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in