Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Dependence Modeling

Ed. by Puccetti, Giovanni


Covered by:
WoS (ESCI)
SCOPUS
MathSciNet
zbMATH


CiteScore 2018: 0.67

SCImago Journal Rank (SJR) 2018: 0.380
Source Normalized Impact per Paper (SNIP) 2018: 0.383

Mathematical Citation Quotient (MCQ) 2018: 0.21

Open Access
Online
ISSN
2300-2298
See all formats and pricing
More options …

Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets

Guojun Gan / Emiliano A. Valdez
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/demo-2017-0021

Abstract

Metamodeling techniques have recently been proposed to address the computational issues related to the valuation of large portfolios of variable annuity contracts. However, it is extremely diffcult, if not impossible, for researchers to obtain real datasets frominsurance companies in order to test their metamodeling techniques on such real datasets and publish the results in academic journals. To facilitate the development and dissemination of research related to the effcient valuation of large variable annuity portfolios, this paper creates a large synthetic portfolio of variable annuity contracts based on the properties of real portfolios of variable annuities and implements a simple Monte Carlo simulation engine for valuing the synthetic portfolio. In addition, this paper presents fair market values and Greeks for the synthetic portfolio of variable annuity contracts that are important quantities for managing the financial risks associated with variable annuities. The resulting datasets can be used by researchers to test and compare the performance of various metamodeling techniques.

Keywords : Monte Carlo; multivariate Black-Scholes; metamodeling; variable annuity; portfolio valuation

MSC 2010: 65C05; 91G60

References

  • [1] Ahlgrim, K. C., S. P. D’Arcy, and R.W. Gorvett (2005). Modeling financial scenarios: A framework for the actuarial profession. Proceedings of the Casualty Actuarial Society 92(177), pp. 177-238.Google Scholar

  • [2] Ahlgrim, K. C., S. P. D’Arcy, and R. W. Gorvett (2008). A comparison of actuarial financial scenario generators. Variance 2(1), 111-134.Google Scholar

  • [3] Bacinello, A., P. Millossovich, A. Olivieri, and E. Pitacco (2011). Variable annuities: A unifying valuation approach. Insurance Math. Econom. 49(3), 285-297.Google Scholar

  • [4] Bacinello, A. R., P. Millossovich, and A. Montealegre (2016). The valuation of GMWB variable annuities under alternative fund distributions and policyholder behaviours. Scand. Actuar. J. 2016(5), 446-465.CrossrefWeb of ScienceGoogle Scholar

  • [5] Bauer, D., A. Kling, and J. Russ (2008). A universal pricing framework for guaranteed minimum benefits in variable annuities. ASTIN Bull. 38(2), 621-651.Web of ScienceCrossrefGoogle Scholar

  • [6] Boyle, P. and M. Hardy (1997). Reserving formaturity guarantees: Two approaches. InsuranceMath. Econom. 21(2), 113-127.Google Scholar

  • [7] Brown, R. A., T. A. Campbell, and L. M. Gorski (2002). Valuation and capital requirements for guaranteed benefits in variable annuities. Record 28(3), Session 142OF.Google Scholar

  • [8] Carmona, R. and V. Durrelman (2006). Generalizing the Black-Scholes formula to multivariate contingent claims. J. Comput. Financ. 9(2), 43-67.Google Scholar

  • [9] Cathcart, M. J., H. Y. Lok, A. J. McNeil, and S. Morrison (2015). Calculating variable annuity liability “greeks” using Monte Carlo simulation. ASTIN Bull. 45(2), 239-266.Web of ScienceGoogle Scholar

  • [10] D’Arcy, S. P. and R. W. Gorvett (2000). Measuring the interest rate sensitivity of loss reserves. Proceedings of the Casualty Actuarial Society 87(167), pp. 365-400.Google Scholar

  • [11] Dardis, T. (2016). Model efficiency in the U.S. life insurance industry. The Modeling Platform 3, 9-16.Google Scholar

  • [12] Feng, R. and H. Huang (2016). Statutory financial reporting for variable annuity guaranteed death benefits:Market practice, mathematical modeling and computation. Insurance Math. Econom. 67, 54-64.Google Scholar

  • [13] Feng, R. and Y. Shimizu (2016). Applications of central limit theorems for equity-linked insurance. Insurance Math. Econom. 69, 138-148.Web of ScienceGoogle Scholar

  • [14] Feng, R. and H. Volkmer (2012). Analytical calculation of risk measures for variable annuity guaranteed benefits. Insurance Math. Econom. 51(3), 636-648.Google Scholar

  • [15] Gan, G. (2013). Application of data clustering and machine learning in variable annuity valuation. Insurance Math. Econom. 53(3), 795-801.Google Scholar

  • [16] Gan, G. (2015a). Application of metamodeling to the valuation of large variable annuity portfolios. Proceedings of the Winter Simulation Conference, pp. 1103-1114.Google Scholar

  • [17] Gan, G. (2015b). A multi-asset Monte Carlo simulation model for the valuation of variable annuities. Proceedings of the 2015 Winter Simulation Conference, pp. 3162-3163.Google Scholar

  • [18] Gan, G. (2017). An Introduction to Excel VBA Programming: With Application in Finance and Insurance. CRC Press, Boca Raton FL.Google Scholar

  • [19] Gan, G. and J. Huang (2017). A data mining framework for valuing large portfolios of variable annuities. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1467-1475.Google Scholar

  • [20] Gan, G. and X. S. Lin (2015). Valuation of large variable annuity portfolios under nested simulation: A functional data approach. Insurance Math. Econom. 62, 138-150.Google Scholar

  • [21] Gan, G. and X. S. Lin (2016). Efficient greek calculation of variable annuity portfolios for dynamic hedging: A two-level metamodeling approach. N. Am. Actuar. J. 21(2), 161-177.Web of ScienceGoogle Scholar

  • [22] Gan, G. and E. A. Valdez (2016). An empirical comparison of some experimental designs for the valuation of large variable annuity portfolios. Depend. Model. 4(1), 382-400.Google Scholar

  • [23] Gan, G. and E. A. Valdez (2017). Regression modeling for the valuation of large variable annuity portfolios. N. Am. Actuar. J. In press.Google Scholar

  • [24] Gerber, H. and E. Shiu (2003). Pricing lookback options and dynamic guarantees. N. Am. Actuar. J. 7(1), 48-66.Google Scholar

  • [25] Hagan, P. S. and G. West (2006). Interpolation methods for curve construction. Appl. Math. Finan. 13(2), 89-129.Google Scholar

  • [26] Hardy, M. (2003). Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance. John Wiley & Sons, Hoboken NJ.Google Scholar

  • [27] Hejazi, S. A. and K. R. Jackson (2016). A neural network approach to efficient valuation of large portfolios of variable annuities. Insurance Math. Econom. 70, 169-181.Google Scholar

  • [28] Hejazi, S. A., K. R. Jackson, and G. Gan (2017). A spatial interpolation framework for efficient valuation of large portfolios of variable annuities. Quant. Financ. Econ. 1(2), 125-144.Web of ScienceCrossrefGoogle Scholar

  • [29] Ledlie, M. C., D. P. Corry, G. S. Finkelstein, A. J. Ritchie, K. Su, and D. C. E. Wilson (2008). Variable annuities. Brit. Actuar. J. 14(2), 327-389.Google Scholar

  • [30] Marshall, C., M. Hardy, and D. Saunders (2010). Valuation of a guaranteed minimum income benefit. N. Am. Actuar. J. 14(1), 38-58.Google Scholar

  • [31] Shevchenko, P. V. and X. Luo (2016). A unified pricing of variable annuity guarantees under the optimal stochastic control framework. Risks 4(3), 22.Google Scholar

  • [32] The Geneva Association (2013). Variable Annuities - An Analysis of Financial Stability. The Geneva Association.Google Scholar

  • [33] Varnell, E. M. (2011). Economic scenario generators and solvency II. Brit. Actuar. J. 16(1), 121-159.Google Scholar

About the article

Received: 2017-09-19

Accepted: 2017-12-05

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Dependence Modeling, Volume 5, Issue 1, Pages 354–374, ISSN (Online) 2300-2298, DOI: https://doi.org/10.1515/demo-2017-0021.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Guojun Gan and Emiliano A. Valdez
North American Actuarial Journal, 2019, Page 1
[2]
Guojun Gan and Emiliano A. Valdez
North American Actuarial Journal, 2019, Page 1
[3]
Zhiyu Quan, Guojun Gan, and Emiliano A. Valdez
SSRN Electronic Journal , 2018

Comments (0)

Please log in or register to comment.
Log in