Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Dependence Modeling

Ed. by Puccetti, Giovanni

Covered by:
WoS (Web of Science - Emerging Sources Citation Index)

CiteScore 2018: 0.67

SCImago Journal Rank (SJR) 2018: 0.380
Source Normalized Impact per Paper (SNIP) 2018: 0.383

Mathematical Citation Quotient (MCQ) 2018: 0.21

Open Access
See all formats and pricing
More options …

The world of vines

An interview with Claudia Czado

Christian Genest / Matthias Scherer
Published Online: 2019-06-28 | DOI: https://doi.org/10.1515/demo-2019-0008


  • [1] Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44(2), 182–198.Google Scholar

  • [2] Acar, E.F., C. Genest, and J. Nešlehová (2012). Beyond simplified pair-copula constructions. J. Multivariate Anal. 110, 74–90.CrossrefWeb of ScienceGoogle Scholar

  • [3] Barthel, N., C. Geerdens, C. Czado, and P. Janssen (2019). Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas. Biometrics, to appear. Available at https://onlinelibrary.wiley.com/doi/full/10.1111/biom.13014.Crossref

  • [4] Bauer, A., C. Czado, and T. Klein (2012). Pair-copula constructions for non-Gaussian DAG models. Canad. J. Statist. 40(1), 86–109.Web of ScienceGoogle Scholar

  • [5] Bedford, T. and R.M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1–4), 245–268.CrossrefGoogle Scholar

  • [6] Bedford, T. and R.M. Cooke (2002). Vines – a new graphical model for dependent random variables. Ann. Statist. 30(4), 1031–1068.CrossrefGoogle Scholar

  • [7] Brechmann, E.C. and C. Czado (2013). Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50. Stat. Risk Model. 30(4), 307–342.Google Scholar

  • [8] Brechmann, E.C., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions with application to financial data. Canad. J. Statist. 40(1), 68–85.Google Scholar

  • [9] Czado, C. (1993). Norm restricted maximum likelihood estimators for binary regression models with parametric link. Comm. Statist. Theory Methods 22(8), 2259–2274.Google Scholar

  • [10] Czado, C. (1994). Parametric link modification of both tails in binary regression. Statist. Papers 35(1), 189–201.Google Scholar

  • [11] Czado, C. and A. Munk (1998). Assessing the similarity of distributions –finite sample performance of the empirical Mallows distance. J. Statist. Comput. Simulation 60(4), 319–346.CrossrefGoogle Scholar

  • [12] Czado, C. and T.J. Santner (1992). The effect of link misspecification on binary regression inference. J. Statist. Plann. Inference 33(2), 213–231.Google Scholar

  • [13] Czado, C. and T.J. Santner (1992). Orthogonalizing parametric link transformation families in binary regression analysis. Canad. J. Statist. 20(1), 51–61.Google Scholar

  • [14] Dißmann, J., E.C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Comput. Statist. Data Anal. 59, 52–69.CrossrefGoogle Scholar

  • [15] Erhardt, T.M., C. Czado, and U. Schepsmeier (2015). Spatial composite likelihood inference using local C-vines. J. Multivariate Anal. 138, 74–88.Web of ScienceGoogle Scholar

  • [16] Gruber, L.F. and C. Czado (2018). Bayesian model selection of regular vine copulas. Bayesian Anal. 13(4), 1111–1135.Web of ScienceGoogle Scholar

  • [17] Hanea, A.M., D. Kurowicka, and R.M. Cooke (2006). Hybrid method for quantifying and analyzing Bayesian belief nets. Qual. Reliab. Eng. Int. 22(6), 709–729.CrossrefGoogle Scholar

  • [18] Jaworski, P., F. Durante, and W.K. Härdle (2013). Copulae in Mathematical and Quantitative Finance. Springer, Heidelberg.Web of ScienceGoogle Scholar

  • [19] Joe, H. (2014). Dependence Modeling with Copulas. CRC Press, Boca Raton FL.Google Scholar

  • [20] Killiches, M. and C. Czado (2018). A D-vine copula based model for repeated measurements extending linear mixed models with homogeneous correlation structure. Biometrics 74(3), 997–1005.CrossrefWeb of ScienceGoogle Scholar

  • [21] Killiches, M., D. Kraus, and C. Czado (2017). Examination and visualisation of the simplifying assumption for vine copulas in three dimensions. Aust. N. Z. J. Stat. 59(1), 95–117.Web of ScienceGoogle Scholar

  • [22] Kraus, D. and C. Czado (2017). D-vine copula based quantile regression. Comput. Statist. Data Anal. 110, 1–18.Google Scholar

  • [23] Kraus, D. and C. Czado (2017). Growing simplified vine copula trees: improving Dißmann’s algorithm. Available at https://arxiv.org/abs/1703.05203.

  • [24] Kreuzer, A. and C. Czado (2019). E˛cient Bayesian inference for univariate and multivariate non linear state space models with univariate autoregressive state equation. Available at https://arxiv.org/abs/1902.10412.

  • [25] Kurowicka, D. and R.M. Cooke (2006). Uncertainty Analysis with High Dimensional Dependence Modelling. John Wiley & Sons, Chichester.Google Scholar

  • [26] Kurowicka, D. and R.M. Cooke (2007). Sampling algorithms for generating joint uniform distributions using the vine-copula method. Comput. Statist. Data Anal. 51(6), 2889–2906.CrossrefGoogle Scholar

  • [27] Kurowicka, D. and H. Joe (2010). Dependence Modeling: Vine Copula Handbook. World Scientific Publishing, Singapore.Google Scholar

  • [28] Kurz, M.S. (2017). pacotest: Testing for Partial Copulas and the Simplifying Assumption in Vine Copulas. R package version 0.3.1. Available on CRAN.Google Scholar

  • [29] Kurz, M.S. and F. Spanhel (2017). Testing the simplifying assumption in high-dimensional vine copulas. Available at https://arxiv.org/abs/1706.02338.

  • [30] Min, A. and C. Czado (2010). Bayesian inference for multivariate copulas using pair-copula constructions. J. Financial Econom. 8(4), 511–546.Google Scholar

  • [31] Morales-Nápoles, O. (2010). Counting vines. In D. Kurowicka and H. Joe (Eds.), Dependence Modeling: Vine Copula Handbook, pp. 189–218. World Scientific Publishing, Singapore.Google Scholar

  • [32] Müller, D. and C. Czado (2018). Representing sparse Gaussian DAGs as sparse R-vines allowing for non-Gaussian dependence. J. Comput. Graph. Statist. 27(2), 334–344.CrossrefGoogle Scholar

  • [33] Müller, D. and C. Czado (2019). Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso. Comput. Statist. Data Anal. 137, 211–232.Google Scholar

  • [34] Munk, A. and C. Czado (1998). Nonparametric validation of similar distributions and assessment of goodness of fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 60(1), 223–241.Google Scholar

  • [35] Nagler, T. (2017). kdevine: Multivariate Kernel Density Estimation with Vine Copulas. R package version 0.4.2. Available on CRAN.Google Scholar

  • [36] Nagler, T. and C. Czado (2016). Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas. J. Multivariate Anal. 151, 69–89.Web of ScienceGoogle Scholar

  • [37] Nagler, T. and D. Kraus (2017). vinereg: D-Vine Quantile Regression. R package version 0.2.0.Google Scholar

  • [38] Nagler, T., C. Schellhase, and C. Czado (2017). Nonparametric estimation of simplified vine copula models: comparison of methods. Depend. Model. 5, 99–120.Google Scholar

  • [39] Newton, M.A., C. Czado, and R. Chappell (1996). Bayesian inference for semiparametric binary regression. J. Amer. Statist. Assoc. 91(433), 142–153.Google Scholar

  • [40] Panagiotelis, A., C. Czado, and H. Joe (2012). Pair copula constructions for multivariate discrete data. J. Amer. Statist. Assoc. 107(499), 1063–1072.Google Scholar

  • [41] Schallhorn, N., D. Kraus, T. Nagler, and C. Czado (2017). D-vine quantile regression with discrete variables. Available at https://arxiv.org/abs/1705.08310.

  • [42] Schellhase, C. (2017). pencopulaCond: Estimating Non-Simplified Vine Copulas Using Penalized Splines. R package version 0.2. Available on CRAN.Google Scholar

  • [43] Schellhase, C. (2017). penRvine: Flexible R-Vines Estimation Using Bivariate Penalized Splines. R package version 0.2. Available on CRAN.Google Scholar

  • [44] Schellhase, C. and F. Spanhel (2018). Estimating non-simplified vine copulas using penalized splines. Stat. Comput. 28(2), 387–409.CrossrefWeb of ScienceGoogle Scholar

  • [45] Schepsmeier, U., J. Stöber, E.C. Brechmann, B. Gräler, T. Nagler, and T. Erhardt et al. (2018). VineCopula: Statistical Inference of Vine Copulas. R package version 2.1.8. Available on CRAN.Google Scholar

  • [46] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231.Google Scholar

  • [47] Stöber, J. and C. Czado (2014). Regime switches in the dependence structure of multidimensional financial data. Comput. Statist. Data Anal. 76, 672–686.CrossrefGoogle Scholar

  • [48] Stöber, J., H.G. Hong, C. Czado, and P. Ghosh (2015). Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses. Comput. Statist. Data Anal. 88, 28–39.Google Scholar

  • [49] Taqqu, M.S. and C. Czado (1985). A survey of functional laws of the iterated logarithm for self-similar processes. Comm. Statist. Stochastic Models 1(1), 77–115.Google Scholar

  • [50] Vatter, T. and T. Nagler (2018). Generalized additive models for pair-copula constructions. J. Comput. Graph. Statist. 27(4), 715–727.CrossrefGoogle Scholar

About the article

Received: 2019-05-21

Accepted: 2019-05-28

Published Online: 2019-06-28

Published in Print: 2019-01-01

Citation Information: Dependence Modeling, Volume 7, Issue 1, Pages 169–180, ISSN (Online) 2300-2298, DOI: https://doi.org/10.1515/demo-2019-0008.

Export Citation

© 2019 Christian Genest et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christian Genest, Ivan Kojadinovic, and Fabrizio Durante
Econometrics and Statistics, 2019

Comments (0)

Please log in or register to comment.
Log in