Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Discrete Mathematics and Applications

Editor-in-Chief: Zubkov, Andrei

6 Issues per year


CiteScore 2016: 0.16

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.552

Online
ISSN
1569-3929
See all formats and pricing
More options …
Volume 26, Issue 3

Issues

Images of a finite set under iterations of two random dependent mappings

Aleksandr A. Serov
Published Online: 2016-07-15 | DOI: https://doi.org/10.1515/dma-2016-0015

Abstract

Let N be a set of N elements and F1,G1,F2,G2, be a sequence of independent pairs of random dependent mappings NN such that Fk and Gk are random equiprobable mappings and P{Fk(x)=Gk(x)}=α for all xN and k = 1, 2, … For a subset S0N,|S0|=n, we consider a sequences of its images Sk=Fk(F2(F1(S0))), Tk=Gk(G2(G1(S0))), k = 1, 2 …, and a sequences of their unions SkTk and intersections SkTk, k = 1, 2 … We obtain two-sided inequalities for M|SkTk| and M|SkTk| such that upper and lower bounds are asymptotically equivalent if N,n,k, nk=o(N) and α=O1N.

Keywords: random mappings of finite sets; joint distributions; iterations of random mappings; Markov chain

Note: Originally published in Diskretnaya Matematika (2015) 27, No_4, 133–140 (in Russian).

References

  • [1]

    Kolchin V.F., Random mappings, Optimization Software Inc. Publications Division, N.Y., 1986, 207 pp.Google Scholar

  • [2]

    Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Random allocations, V. H. Winston & Sons, Washington, 1978, 262 pp.Google Scholar

  • [3]

    Gantmacher F.R., The Theory of Matrices, 1, 2, Chelsea Publishing Company. NewYork, 1959, vol. 1: x+374 pp., vol. 2: x+277 pp.Google Scholar

  • [4]

    Zubkov A. M., Serov A. A., “Images of subset of finite set under iterations of random mappings”, Discrete Math. Appl., 25:3 (2015), 179–185.Web of ScienceGoogle Scholar

  • [5]

    Stepanov V. E., “On the distribution of the number of vertices in strata of a random tree”, Theory Probab. Appl., 14:1 (1969), 64–77.Google Scholar

  • [6]

    Dalal A., Schmutz E. “Compositions of random functions on a finite set”, Electr. J. Comb., 9:R26 (2002).Google Scholar

  • [7]

    Flajolet P., Odlyzko A. M., “Random mapping statistics”, Lect. Notes Comput. Sci., 434, 1990, 329–354.Google Scholar

  • [8]

    Goh W. M. Y., Hitczenko P., Schmutz E., “Iterating random functions on a finite set”, 2014, 7 pp., arXiv: arXiv:math/0207276v2.Google Scholar

  • [9]

    Kingman J. F. C., “The coalescent”, Stoch.Proc. Appl., 13 (1982), 235–248.Google Scholar

About the article

Received: 2015-10-30

Published Online: 2016-07-15

Published in Print: 2016-07-01


Funding Source: Russian Science Foundation

Award identifier / Grant number: 14-50-00005

This work was supported by the Russian Science Foundation under grant no. 14-50-00005


Citation Information: Discrete Mathematics and Applications, Volume 26, Issue 3, Pages 175–181, ISSN (Online) 1569-3929, ISSN (Print) 0924-9265, DOI: https://doi.org/10.1515/dma-2016-0015.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Андрей Михайлович Зубков, Andrei Mikhailovich Zubkov, Александр Александрович Серов, and Aleksandr Aleksandrovich Serov
Дискретная математика, 2017, Volume 29, Number 1, Page 17

Comments (0)

Please log in or register to comment.
Log in