Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Discrete Mathematics and Applications

Editor-in-Chief: Zubkov, Andrei

6 Issues per year


CiteScore 2016: 0.16

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.552

Online
ISSN
1569-3929
See all formats and pricing
More options …
Volume 26, Issue 5

Issues

The algorithm for identical object searching with bounded worst-case complexity and linear memory

El’yar E. Gasanov / Andrey M. Zubkov / Natalia V. Klykova
Published Online: 2016-11-08 | DOI: https://doi.org/10.1515/dma-2016-0024

Abstract

We propose and investigate new algorithms permitting to find an identical object in the database using the number of operations not depending on the volume of the database. One algorithm requires memory size that depends linearly on the database volume in the average.

Keywords: key search; time complexity of algorithms; memory size

References

  • [1]

    Gasanov E. E., Lugovskaya Yu. P., “A constant, in the worst case, algorithm to search for identical objects”, Discrete Math. Appl., 9:6 (1999), 679–684.Google Scholar

  • [2]

    Klykova N. V., Fast algorithms for fnding objects in the database, Degree thesis, MGU, 2001 (in Russian), 13 pp.Google Scholar

  • [3]

    Gasanov E.E., “The solution to the problem of optimal synthesis of information graphs for background problems of information search”, Doklady Mathematics, 62:2 (2000), 304–305.Google Scholar

  • [4]

    Gasanov E. E., Kudryavtsev V. B., The theory of information storage and retrieval, M.: Fizmatlit, 2002 (in Russian).Google Scholar

  • [5]

    Gasanov E. E., The theory of information retrieval complexity, M.: Izd-vo MGU, 2005 (in Russian).Google Scholar

  • [6]

    Knuth. D.E., The Art of Computer Programming. Volume 3. Sorting and searching, Addison-Wesley, 1973, 723 pp.Google Scholar

  • [7]

    Borodin A. B., “Computational complexity — Theory and practice” (Current Trends in Theory of Computing), 1973, 35–89.Google Scholar

  • [8]

    Bottenbruch H., “Structure and use of ALGOL 60”, J. ACM, 9 (1962), 161–221.Google Scholar

  • [9]

    Dumey A., “Indexing for rapid random access memory systems”, Computers and Automation, 4:12 (1956), 6–9.Google Scholar

  • [10]

    Hagerup T., “Fast deterministic construction of static dictionaries” (SODA’99 Proc. 10th Annu. ACM-SIAM Symp. Discrete algorithms), 1999, 414–418.Google Scholar

  • [11]

    Hagerup T., Miltersen P. B., Pagh R., “Deterministic dictionaries”, J. Algorithms, 41:1 (2001), 69-85.Web of ScienceGoogle Scholar

  • [12]

    Hagerup T., “Simpler and faster dictionaries on the AC0 RAM”, ICALP, Lect. Notes Comput. Sci., 1443, Springer-Verlag, 1998, 79–90.Google Scholar

  • [13]

    Maurer W. D., Lewis T. G., “Hash table methods”, Computing Surveys, 7 (1975), 5–20.Google Scholar

  • [14]

    Pletnev A. A., “The dynamic database allowing parallel processing of arbitrary stream queries”, Intellektual’nye sistemy, 19:1 (2014), 117–142 (in Russian).Google Scholar

  • [15]

    Pletnev A. A., “Parallel processing by automaton of arbitrary stream queries to the dynamic database with logarithmic complexity”, Intellektual’nye sistemy, 19:1 (2014), 171–212 (in Russian).Google Scholar

  • [16]

    Pletnev A. A., “The information-graph model of dynamic database and its application”, Intellektual’nye sistemy, 18:1 (2014),111–140 (in Russian).Google Scholar

  • [17]

    Perper E. M., “Lower bounds of temporal and spatial complexity of the substring search problem”, Discrete Math. Appl., 24:6 (2014), 373–382.Google Scholar

  • [18]

    Gasanov E. E., Efremov D. V., “Background algorithm for solving two-dimensional domination problem”, Intellektual’nye sistemy, 18:3 (2014), 133–158 (in Russian).Google Scholar

  • [19]

    Shutkin Yu. S., “Simulation of circuit control systems”, Intellektual’nye sistemy, 18:3 (2014), 253–261 (in Russian).Google Scholar

  • [20]

    Perper E. M., “The order of complexity of the subword search problem in the set of words”, Intellektual’nye sistemy, 19:1 (2014), 99–116 (in Russian).Google Scholar

  • [21]

    Il’in V.A., SadovnichiyV. A., Sendov Bl. Kh., Mathematical analysis. Continuation of the course / Ed. A.N.Tikhonova, M.: Izd-vo MGU, 1987 (in Russian), 358 pp.Google Scholar

About the article

Originally published in Diskretnaya Matematika (2016) 28, №2, 3–11 (in Russian)


Received: 2015-12-06

Published Online: 2016-11-08

Published in Print: 2016-10-01


Citation Information: Discrete Mathematics and Applications, Volume 26, Issue 5, Pages 273–278, ISSN (Online) 1569-3929, ISSN (Print) 0924-9265, DOI: https://doi.org/10.1515/dma-2016-0024.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in