Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Discrete Mathematics and Applications

Editor-in-Chief: Zubkov, Andrei

CiteScore 2016: 0.16

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.552

See all formats and pricing
More options …
Volume 28, Issue 3


On the non-recurrent random walk in a random environment

Valeriy I. Afanasyev
Published Online: 2018-06-14 | DOI: https://doi.org/10.1515/dma-2018-0014


For weakly transient random walk in a random environment that tend at −∞ the limit theorem for the time of hitting a high level is proved.

Keywords: random walk in a random environment; branching process with migration in a random environment; Brownian excursion; functional limit theorems


Originally published in Diskretnaya Matematika (2016) 28, №4, 6–28 (in Russian).


  • [1]

    Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1-31.CrossrefGoogle Scholar

  • [2]

    Afanas’ev V. I., “On a maximum of a transient random walk in random environment”, Theory Probab. Appl., 35:2 (1990), 205–215.Google Scholar

  • [3]

    Afanasyev V. I., “On the time of attaining a high level by a transient randomwalk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207.CrossrefGoogle Scholar

  • [4]

    Kesten H., Kozlov M.V., Spitzer F., “A limit law for random walk in a random environment”, Compositio mathematica, 30:2 (1975), 145-168.Google Scholar

  • [5]

    Geiger J., Kersting G., Vatutin V. A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. PoincareProbab. Statist., 39:4 (2003), 593-620.Google Scholar

  • [6]

    Afanasyev V. I., Random walks and branching processes, M.: MIAN, 2007.Google Scholar

  • [7]

    Afanasyev V. I., “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567.Web of ScienceCrossrefGoogle Scholar

  • [8]

    Afanasyev V. I., “A new theorem for a critical branching process in random environment”, Discrete Math. Appl., 7:5 (1997), 497–513.Google Scholar

  • [9]

    Durrett R.T., Iglehart D.L., “Functionals of Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 130-135.CrossrefGoogle Scholar

About the article

Received: 2017-06-27

Revised: 2017-10-28

Published Online: 2018-06-14

Published in Print: 2018-06-26

This work was supported by the RFBR (grant 14-01-00318) and by the Presidium of RAS program “Mathematical problems of modern control theory”.

Citation Information: Discrete Mathematics and Applications, Volume 28, Issue 3, Pages 139–156, ISSN (Online) 1569-3929, ISSN (Print) 0924-9265, DOI: https://doi.org/10.1515/dma-2018-0014.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Валерий Иванович Афанасьев and Valeriy Ivanovich Afanasyev
Теория вероятностей и ее применения, 2018, Volume 63, Number 3, Page 417

Comments (0)

Please log in or register to comment.
Log in