Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Discrete Mathematics and Applications

Editor-in-Chief: Zubkov, Andrei


CiteScore 2018: 0.44

SCImago Journal Rank (SJR) 2018: 0.325
Source Normalized Impact per Paper (SNIP) 2018: 0.987

Online
ISSN
1569-3929
See all formats and pricing
More options …
Volume 28, Issue 3

Issues

Biorthogonal wavelet codes with prescribed code distance

Alexander A. Soloviev / Dmitry V. Chernikov
Published Online: 2018-06-14 | DOI: https://doi.org/10.1515/dma-2018-0017

Abstract

We propose a scheme of construction of 2-circulant codes with given code distance on the basis of biorthogonal filters with the property of perfect reconstruction over a finite filed of odd characteristic. The corresponding algorithm for constructing biorthogonal filters utilizes the Euclidean algorithm for finding the gcd of polynomials.

Keywords: wavelet codes; error-correcting coding; code distance

Note

Originally published in Diskretnaya Matematika (2017) 29,№2, 96–108 (in Russian).

References

  • [1]

    Fekri F., McLaughlin S. W., Mersereau R. M., Schafer R. W., “Double circulant self-dual codes using finite-field wavelet transforms”, Lect. Notes Comput. Sci., 1719, 1999, 355–363.CrossrefGoogle Scholar

  • [2]

    Fekri F., McLaughlin S. W., Mersereau R. M., Schafer R. W., “Error control coding using finite-field wavelet transforms”, Center for Signal Image Processing, Georgia Inst. Technol., Atlanta, 1999, 1–13.Google Scholar

  • [3]

    Caire G., Grossman R.L., Poor H.V., “Wavelet transforms associated with finite cyclic groups”, IEEE Trans. Inf. Theory, 39 (1993), 1157–1166.CrossrefGoogle Scholar

  • [4]

    Fekri F., Mersereau R. M., Schafer R. W., “Theory of wavelet transform over finite fields,” Proc. IEEE Int. Conf. Acoust. Speech, and Signal Processing (Atlanta, GA, USA), 1999, 1213–1216.Google Scholar

  • [5]

    Mallat S. G., A wavelet tour of signal processing Academic Press, San Diego, CA, 1997.Google Scholar

  • [6]

    Fekri F., Mersereau R. M., Schafer R. W., “Theory of paraunitary filter banks over fields of characteristic two”, IEEE Trans. Inf. Theory, 48:11 (2002), 2964–2979.CrossrefGoogle Scholar

  • [7]

    Phoong S.M., Vaidyanathan P.P., “Paraunitary filter banks over finite fields”, IEEE Trans. Signal Proc., 45 (1997), 1443–1457.CrossrefGoogle Scholar

  • [8]

    Chernikov D.V., “Error-correcting codes using biorthogonal filter banks”, Sib. Elektron. Mat. Izv., 12 (2015), 704–713 (in Russian).Google Scholar

  • [9]

    Daubechies I., Sweldens W., “Factoring wavelet transforms into lifting steps”, J. Fourier Anal. Appl., 4:3 (1998), 247–269.CrossrefGoogle Scholar

  • [10]

    Solov’yev A.A., Chernikov D.V., “Biorthogonal wavelet code in the fields of characteristic two”, Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 66–79 (in Russian).Google Scholar

  • [11]

    Welch L., Berlekamp T.R., “Error correction for algebrail block codes”, U.S. Patent 4, 633, 470:Sep. 27 (1983).Google Scholar

  • [12]

    Shiozaki A., “Decoding of redundant residue polynomial codes using Euclid’s algorithm”, IEEE Trans. Inf. Theory, 34:5 (1988), 1351–1354.CrossrefGoogle Scholar

  • [13]

    Gao S., “A new algorithm for decoding Reed–Solomon codes”, Comm. Inf. Network Secur., 712 (2003), 55–68.Google Scholar

  • [14]

    Fedorenko S.V., “A simple algorithm for decoding algebraic codes”, Inf. Upr. Sistemy, 3 (2008), 23–27 (in Russian).Google Scholar

  • [15]

    MacWilliams E. J., Sloane N. J. A., The theory of error-correcting codes. Parts I, II., North-Holland, Amsterdam, 1977.Google Scholar

About the article

Received: 2015-09-07

Revised: 2017-05-10

Published Online: 2018-06-14

Published in Print: 2018-06-26


Citation Information: Discrete Mathematics and Applications, Volume 28, Issue 3, Pages 179–188, ISSN (Online) 1569-3929, ISSN (Print) 0924-9265, DOI: https://doi.org/10.1515/dma-2018-0017.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in