Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board Member: Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.

4 Issues per year

CiteScore 2016: 1.40

SCImago Journal Rank (SJR) 2016: 0.413
Source Normalized Impact per Paper (SNIP) 2016: 0.537

See all formats and pricing
More options …
Volume 28, Issue 1 (Feb 2013)


Quantitative structure-activity relationship analysis of thiazolidineones: potent antidiabetic compounds

Vijay Kumar Vishvakarma / Prashant Singh
  • Corresponding author
  • Department of Applied Chemistry, BBA University, Lucknow, Uttar Pradesh, India
  • A.R.S.D. College, University of Delhi, New Delhi, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monica Dubey / Kamlesh Kumari / Ramesh Chandra / Narender D. Pandey
Published Online: 2013-02-16 | DOI: https://doi.org/10.1515/dmdi-2012-0036


Background: Type 2 diabetes is the most common form of diabetes, accounting for over 90% of cases. Current treatment approaches for type 2 diabetes include diet, exercise, and a variety of pharmacologic agents, including insulin, biguanides, sulfonylureas, and thiazolidinediones.

Methods: In the present scenario, researchers focused themselves on thiazolidine ring-based compounds to cure type 2 diabetes mellitus. Among the peroxisome proliferator activated receptor (PPAR) family, PPAR-γ is the most effective in curing glucose homeostasis.

Results and conclusions: Thiazolidine ring-based compounds act as PPAR-γ agonists, and herein, we have successfully developed nine derivatives of thiazolidine ring-based compounds that are found to be biologically potent using two-dimensional quantitative structure-activity relationship model.

Keywords: antidiabetic; drug design; peroxisome proliferator activated receptors (PPARs); quantitative structure-activity relationship (QSAR); quantum chemistry descriptors; thiazolidineones


  • 1.

    Centers for Disease Control and Prevention. National Diabetes fact sheet: general information and national estimates on diabetes in the United States, 2007. Atlanta, GA: Department of Health and Human Services. Centers for Disease Control and Prevention, 2008.Google Scholar

  • 2.

    American Diabetes Association. Standards of medical care in diabetes. Diabetes Care J 2007;30(Suppl 1):S4­–41.Google Scholar

  • 3.

    Prashant S, Kamlesh K, Gaurav K, Gopal KM. Efficient one-pot four-component synthesis of fused thiazolopyridin-2-ones in ionic liquid. J Chem Sci 2012, in press.Google Scholar

  • 4.

    Prashant S, Kamlesh K, Monica D, Vijay KV, Narendera DP, Ramesh C, et al. Ionic liquid catalyzed synthesis of 7-phenyl-1,4,6,7-tetrahydro-thiazolo[5,4-d] pyrimidine-2,5-diones. C R Chimie 2012;15:504–10.Google Scholar

  • 5.

    Kamlesh K, Prashant S, Monica D, Narendera DP, Ramesh C, Gopal KM. A catalyst free convenient one pot synthesis of multisubstituted chromeno-thiazolones. C R Chimie 2012;15:267–72.Web of ScienceGoogle Scholar

  • 6.

    Prashant S, Kamlesh K, Vartika T, Mohd S, Rajan P, Gopal KM, et al. A novel method to chemically bind the thiazolidine-2,4-dione through cross linked chitosan nanoparticles using malanodialdehyde as a cross linker. Can J Chem 2011;89:1–11.Web of ScienceGoogle Scholar

  • 7.

    Pradip K, Prankaj K, Jagvir S, Prashant S, Ramesh C. Synthesis and evaluation of antimicrobial activity of 8-phenyl-3,4,7,8-tetrahydrobisthiazolopyridine-2,6-dione derivatives. J Chem Asia 2011;2:101–14.Google Scholar

  • 8.

    Prashant S, Pradeep K, Anju K, Rashmi K, Sujata KD, Satya P, et al. Synthesis and electrochemical studies of charge transfer complexes of thiazolidine-2, 4-dione with sigma and pi acceptors. Spectrochim Acta A Mol Biomol Spectrosc 2010;75:983–91.Google Scholar

  • 9.

    Prashant S, Kamlesh K, Anju K, Rashmi K, Ramesh C. Copper nanoparticles in ionic liquid: an easy and efficient catalyst for selective Cara-Michael addition reaction. Catal Lett 2009;127:119–25.Google Scholar

  • 10.

    Prashant S, Kamlesh K, Anju K, Rashmi K, Ramesh C. Cu nanoparticles in ionic liquid: an easy and efficient catalyst for addition-elimination reaction between active methylene compounds and imines in an ionic liquid. Catal Lett 2009;130:648–54.Web of ScienceGoogle Scholar

  • 11.

    Prashant S, Anju K, Rashmi K, Ramesh C. Copper nanoparticles in ionic liquid: an easy and efficient catalyst for the coupling of thiazolidine-2,4-dione, aromatic aldehyde and ammonium acetate. Catal Commun 2008;9:1618–23.Google Scholar

  • 12.

    Prashant S, Anju K, Rashmi K, Ramesh C. Copper nanoparticles in an ionic liquid: an efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxothiazolyl)methanes. Tetrahedron Lett 2008;49:727–30.Google Scholar

  • 13.

    Ajeet K, Prashant S, Amit S, Arnab D, Ramesh C, Subho M. Nano-sized copper as an efficient catalyst for one pot three component synthesis of thiazolidine-2, 4-dione derivatives. Catal Commun 2008;10:17–22.Web of ScienceGoogle Scholar

  • 14.

    Ibrahimi A, Teboul L, Gaillard D, Amri EZ, Ailhaud G, Young P, et al. Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in pre-adipose cells. Mol Pharmacol 1994;46:1070–6.Google Scholar

  • 15.

    Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol 1992;41:393–8.PubMedGoogle Scholar

  • 16.

    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator activated receptor gamma (PPAR gamma). J Biol Chem 1995;270:12953–6.PubMedGoogle Scholar

  • 17.

    Komers R, Vrana A. Thiazolidinediones—tools for the research of metabolic syndrome X. Physiol Res 1998;47:215–25.PubMedGoogle Scholar

  • 18.

    Evans RM, Barish GD, Wang Y-X. PPARs and the complex journey to obesity. Nat Med 2004;10:355–61.PubMedCrossrefGoogle Scholar

  • 19.

    Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000;43: 527–50.CrossrefPubMedGoogle Scholar

  • 20.

    Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53:409–35.CrossrefPubMedGoogle Scholar

  • 21.

    Hansch C, Leo A. Substituent constants for correlation analysis in chemistry and biology. New York: John Wiley & Sons, 1979.Google Scholar

  • 22.

    Rathi L, Kashaw SK, Dixit A, Pandey G, Saxena AK. Pharmacophore identification and 3D-QSAR studies in N-(2-benzoyl phenyl)-l-tyrosines as PPAR gamma agonists. Bioorg Med Chem 2004;12:63–9.CrossrefGoogle Scholar

  • 23.

    Liao C, Xie A, Shi L, Zhou J, Lu X. Eigenvalue analysis of peroxisome proliferator-activated receptor gamma agonists. J Chem Inf Comput Sci 2004;44:230–8.CrossrefPubMedGoogle Scholar

  • 24.

    Hyun KH, Lee DY, Lee B, Kim CK. Receptor-based 3D QSAR studies on PPARgamma agonists using CoMFA and CoMSIA approaches. QSAR Comb Sci 2004;23:637–49.CrossrefGoogle Scholar

  • 25.

    Kurogi Y. Three-dimensional quantitative structure-activity relationships (3D-QSAR) of antidiabetic thiazolidinediones. Drug Des Discov 1999;16:109–18.PubMedGoogle Scholar

  • 26.

    Kapoor M, McCann M, Liu S, Huh K, Denton CP, Abraham DJ, et al. Loss of peroxisome proliferator-activated receptor gamma in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum 2009;60:2822–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 27.

    Rucker C, Scarsi M, Meringer M. 2D QSAR of PPARgamma agonist binding and transactivation. Bioorg Med Chem 2006;14:5178–95.PubMedCrossrefGoogle Scholar

  • 28.

    Kulkarni SS, Gediya LK, Kulkarni VM. Three-dimensional quantitative structure activity relationships (3-D-QSAR) of antihyperglycemic agents. Bioorg Med Chem 1999;7:1475–85.PubMedCrossrefGoogle Scholar

  • 29.

    Sotriffer CA, Winger RH, Liedl KR, Rode Bernd M, Varga JM. Comparative docking studies on ligand binding to the multispecific antibodies IgE-La2 and IgE-Lb4. J Comput Aided Mol Des 1996;10:305–20.CrossrefGoogle Scholar

  • 30.

    Brass LF. Thrombin and platelet activation. Chest 2003;124:3(Suppl):18S–25S.Google Scholar

  • 31.

    Rubenstein LA, Lanzara RG. Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J Mol Struct (Theochem) 1998;430:57–71.Google Scholar

  • 32.

    Raymond V, Sattelle DB. Novel animal-health drug targets from ligand-gated chloride channels. Nat Rev Drug Discov 2002;1:427–36.CrossrefPubMedGoogle Scholar

  • 33.

    Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 2008;21:659–67.Web of SciencePubMedCrossrefGoogle Scholar

  • 34.

    Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotech 2011;29:1039–45.CrossrefGoogle Scholar

  • 35.

    Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotech 2011;29:1046–51.CrossrefGoogle Scholar

  • 36.

    Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997;389:753–8.Google Scholar

  • 37.

    Tenson T, Lovmar M, Ehrenberg M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 2003;330:1005–14.Google Scholar

  • 38.

    Katz AH, Caufield CE. Structure-based design approaches to cell wall biosynthesis inhibitors. Current Pharm Des 2003;9:857–66.Google Scholar

About the article

Corresponding author: Prashant Singh, Department of Applied Chemistry, BBA University, Lucknow Uttar Pradesh 226025, India

Received: 2012-10-06

Accepted: 2013-01-10

Published Online: 2013-02-16

Published in Print: 2013-02-01

Citation Information: Drug Metabolism and Drug Interactions, ISSN (Online) 2191-0162, ISSN (Print) 0792-5077, DOI: https://doi.org/10.1515/dmdi-2012-0036.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in