Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.


CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.531
Source Normalized Impact per Paper (SNIP) 2017: 0.645

Online
ISSN
2363-8915
See all formats and pricing
More options …
Volume 28, Issue 2

Issues

An update on the constitutive androstane receptor (CAR)

Ferdinand Molnár
  • School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jenni Küblbeck
  • School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johanna Jyrkkärinne
  • School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktória Prantner
  • School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paavo Honkakoski
  • Corresponding author
  • School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-13 | DOI: https://doi.org/10.1515/dmdi-2013-0009

Abstract

The constitutive androstane receptor (CAR; NR1I3) has emerged as one of the main drug- and xenobiotic-sensitive transcriptional regulators. It has a major effect on the expression of several oxidative and conjugative enzymes and transporters, and hence, CAR can contribute to drug/drug interactions. Novel functions for CAR are also emerging: it is able to modulate the metabolic fate of glucose, lipids, and bile acids, and it is also involved in cell-cell communication, regulation of the cell cycle, and chemical carcinogenesis. Here, we will review the recent information available on CAR and its target gene expression, its interactions with partner proteins and mechanisms of action, interindividual and species variation, and current advances in CAR ligand selectivity and methods used in interrogation of its ligands.

Keywords: constitutive androstane receptor (CAR); CYP expression; in vitro assays; ligand-binding domain; ligand specificity; nuclear receptor

References

  • 1.

    Honkakoski P, Sueyoshi T, Negishi M. Drug-activated nuclear receptors CAR and PXR. Ann Med 2003;35:172–82.CrossrefGoogle Scholar

  • 2.

    Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 2006;38: 515–97.CrossrefGoogle Scholar

  • 3.

    Timsit YE, Negishi M. CAR and PXR: the xenobiotic-sensing receptors. Steroids 2007;72:231–46.CrossrefGoogle Scholar

  • 4.

    di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Asp Med 2009;30:297–343.CrossrefGoogle Scholar

  • 5.

    Reschly EJ, Krasowski MD. Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 2006;7:349–65.CrossrefGoogle Scholar

  • 6.

    Graham MJ, Lake BG. Induction of drug metabolism: species differences and toxicological relevance. Toxicology 2008;254:184–91.Google Scholar

  • 7.

    Lamba J, Lamba V, Schuetz E. Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr Drug Metab 2005;6:369–83.CrossrefGoogle Scholar

  • 8.

    Lamba JK. Pharmacogenetics of the constitutive androstane receptor. Pharmacogenomics 2008;9:71–83.CrossrefGoogle Scholar

  • 9.

    Tirona RG, Kim RB. Nuclear receptors and drug disposition gene regulation. J Pharmacol Sci 2005;94:1169–86.CrossrefGoogle Scholar

  • 10.

    Zhou J, Zhang J, Xie W. Xenobiotic nuclear receptor-mediated regulation of UDP-glucuronosyl-transferases. Curr Drug Metab 2005;6:289–98.CrossrefGoogle Scholar

  • 11.

    Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010;62:1238–49.CrossrefGoogle Scholar

  • 12.

    Staudinger JL, Xu C, Cui YJ, Klaassen CD. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab 2010;6:261–71.CrossrefGoogle Scholar

  • 13.

    Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011;43:92–137.CrossrefGoogle Scholar

  • 14.

    Chai X, Zeng S, Xie W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab 2013;9:253–66.CrossrefGoogle Scholar

  • 15.

    Swales K, Negishi M. CAR, driving into the future. Mol Endocrinol 2004;18:1589–98.CrossrefGoogle Scholar

  • 16.

    Pascussi J-M, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem M-J, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 2008;48:1–32.CrossrefGoogle Scholar

  • 17.

    Li H, Wang H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab 2010;6:409–26.CrossrefGoogle Scholar

  • 18.

    Moreau A, Vilarem MJ, Maurel P, Pascussi JM. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Pharmaceutics 2008;5:35–41.CrossrefGoogle Scholar

  • 19.

    Wada T, Gao J, Xie W. PXR and CAR in energy metabolism. Trends Endocr Met 2009;20:273–9.Google Scholar

  • 20.

    Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci 2012;33:552–8.CrossrefGoogle Scholar

  • 21.

    Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin Liver Dis 2010;30:160–77.CrossrefGoogle Scholar

  • 22.

    Poso A, Honkakoski P. Ligand recognition by drug-activated nuclear receptors PXR and CAR: structural, site-directed mutagenesis and molecular modeling studies. Mini Rev Med Chem 2006;6:937–47.CrossrefGoogle Scholar

  • 23.

    Raucy JL, Lasker JM. Current in vitro high throughput screening approaches to assess nuclear receptor activation. Curr Drug Metab 2010;11:806–14.CrossrefGoogle Scholar

  • 24.

    Köhle C, Schwarz M, Bock KW. Promotion of hepatocarcinogenesis in humans and animal models. Arch Toxicol 2008;82:623–31.CrossrefGoogle Scholar

  • 25.

    Baes M, Gulick T, Choi H, Stinoli MG, Simha D, Moore DD. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 1994;14:1544–52.Google Scholar

  • 26.

    Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, et al. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 1997;272: 23565–71.Google Scholar

  • 27.

    Trottier E, Belzil A, Stoltz C, Anderson A. Localization of a phenobarbital-responsive element (PBRE) in the 5′-flanking region of the rat CYP2B2 gene. Gene 1995;158:263–8.CrossrefGoogle Scholar

  • 28.

    Honkakoski P, Negishi M. Characterization of a phenobarbital-responsive enhancer module in mouse P450 Cyp2b10 gene. J Biol Chem 1997;272:14943–9.Google Scholar

  • 29.

    Honkakoski P, Moore R, Washburn KA, Negishi M. Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol 1998;53:597–601.Google Scholar

  • 30.

    Honkakoski P, Zelko I, Sueyoshi T, Negishi M. The nuclear orphan receptor car-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 1998;18:5652–8.Google Scholar

  • 31.

    Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 2000;407:920–3.Google Scholar

  • 32.

    Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol 2002;61:1–6.CrossrefGoogle Scholar

  • 33.

    Yamamoto Y, Moore R, Goldsworthy TL, Negishi Monpot RR. The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res 2004;64:7197–200.CrossrefGoogle Scholar

  • 34.

    Zhang Q, Bae Y, Kemper JK, Kemper B. Analysis of multiple nuclear receptor binding sites for CAR/RXR in the phenobarbital responsive unit of CYP2B2. Arch Biochem Biophys 2006;451:119–27.CrossrefGoogle Scholar

  • 35.

    Lau AJ, Yang G, Rajaraman G, Baucom CC, Chang TK. Species-dependent and receptor-selective action of bilobalide on the function of constitutive androstane receptor and pregnane X receptor. Drug Metab Dispos 2012;40:178–86.CrossrefGoogle Scholar

  • 36.

    Huang W, Zhang J, Washington M, Liu J, Parant JM, Lozano G, et al. Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. Mol Endocrinol 2005;19:1646–53.CrossrefGoogle Scholar

  • 37.

    Kiyosawa N, Kwekel JC, Burgoon LD, Dere E, Williams KJ, Tashiro C, et al. Species-Specific regulation of PXR/CAR/ER-target genes in the mouse and rat liver elicited by o,p′-DDT. BMC Genomics 2008;9:487.CrossrefGoogle Scholar

  • 38.

    Chen T, Chen Q, Xu Y, Zhou Q, Zhu J, Zhang H, et al. SRC-3 is required for car-regulated hepatocyte proliferation and drug metabolism. J Hepatol 2012;56:210–7.CrossrefGoogle Scholar

  • 39.

    Tian J, Huang H, Hoffman B, Liebermann DA, Ledda-Columbano GM, Columbano A, et al. Gadd45Β is an inducible coactivator of transcription that facilitates rapid liver growth in mice. J Clin Invest 2011;121:4491–502.CrossrefGoogle Scholar

  • 40.

    Kodama S, Koike C, Negishi M, Yamamoto Y. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 2004;24:7931–40.CrossrefGoogle Scholar

  • 41.

    Xu RX, Lambert MH, Wisely BB, Warren EN, Weinert EE, Waitt GM, et al. A structural basis for constitutive activity in the human CAR/RXRα heterodimer. Mol Cell 2004;16:919–28.CrossrefGoogle Scholar

  • 42.

    Suino K, Peng L, Reynolds R, Li Y, Cha JY, Repa JJ, et al. The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell 2004;16:893–905.Google Scholar

  • 43.

    Shan L, Vincent J, Brunzelle JS, Dussault I, Lin M, Ianculescu I, et al. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism. Mol Cell 2004;16:907–17.Google Scholar

  • 44.

    Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 1998;10:384–91.CrossrefGoogle Scholar

  • 45.

    Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 2000;5:173–9.CrossrefGoogle Scholar

  • 46.

    Stehlin C, Wurtz JM, Steinmetz A, Greiner E, Schüle R, Moras D, et al. X-ray structure of the orphan nuclear receptor RORβ ligand-binding domain in the active conformation. EMBO J 2001;20:5822–31.CrossrefGoogle Scholar

  • 47.

    Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I, et al. X-ray structure of the hRORα LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure (Camb) 2002;10:1697–707.Google Scholar

  • 48.

    Gampe RT, Montana VG, Lambert MH, Wisely GB, Milburn MV, Xu HE. Structural basis for autorepression of retinoid X receptor by tetramer formation and the AF-2 helix. Genes Dev 2000;14:2229–41.CrossrefGoogle Scholar

  • 49.

    Jyrkkärinne J, Windshügel B, Mäkinen J, Ylisirniö M, Peräkylä M, Poso A, et al. Amino acids important for ligand specificity of the human constitutive androstane receptor. J Biol Chem 2005;280:5960–71.Google Scholar

  • 50.

    Dussault I, Lin M, Hollister K, Fan M, Termini J, Sherman MA, et al. A structural model of the constitutive androstane receptor defines novel interactions that mediate ligand-independent activity. Mol Cell Biol 2002;22:5270–80.CrossrefGoogle Scholar

  • 51.

    Windshügel B, Jyrkkärinne J, Poso A, Honkakoski P, Sippl W. Molecular dynamics simulations of the human CAR ligand-binding domain: deciphering the molecular basis for constitutive activity. J Mol Model 2005;11:69–79.CrossrefGoogle Scholar

  • 52.

    Windshügel B, Jyrkkärinne J, Vanamo J, Poso A, Honkakoski P, Sippl W. Comparison of homology models and x-ray structures of the nuclear receptor CAR: assessing the structural basis of constitutive activity. J Mol Graph 2007;25:644–57.Google Scholar

  • 53.

    Windshügel B, Poso A. Constitutive activity and ligand-dependent activation of the nuclear receptor car-insights from molecular dynamics simulations. J Mol Recogn 2011;24:875–82.CrossrefGoogle Scholar

  • 54.

    Jyrkkärinne J, Küblbeck J, Pulkkinen J, Honkakoski P, Laatikainen R, Poso A, et al. Molecular dynamics simulations for human CAR inverse agonists. J Chem Inf Model 2012;52:457–64.CrossrefGoogle Scholar

  • 55.

    Repo S, Jyrkkärinne J, Pulkkinen JT, Laatikainen R, Honkakoski P, Johnson MS. Ligand specificity of constitutive androstane receptor as probed by induced-fit docking and mutagenesis. J Med Chem 2008;51:7119–31.CrossrefGoogle Scholar

  • 56.

    Küblbeck J, Laitinen T, Jyrkkärinne J, Rousu T, Tolonen A, Abel T, et al. Use of comprehensive screening methods to detect selective human CAR activators. Biochem Pharmacol 2011;82:1994–2007.CrossrefGoogle Scholar

  • 57.

    Küblbeck J, Jyrkkärinne J, Molnár F, Kuningas T, Patel J, Windshügel B, et al. New in vitro tools to study human constitutive androstane receptor (CAR) biology: discovery and comparison of human CAR inverse agonists. Mol Pharm 2011;8:2424–33.CrossrefGoogle Scholar

  • 58.

    Jyrkkärinne J, Mäkinen J, Gynther J, Savolainen H, Poso A, Honkakoski P. Molecular determinants of steroid inhibition for the mouse constitutive androstane receptor. J Med Chem 2003;46:4687–95.CrossrefGoogle Scholar

  • 59.

    Küblbeck J, Jyrkkärinne J, Poso A, Turpeinen M, Sippl W, Honkakoski P, et al. Discovery of substituted sulfonamides and thiazolidin-4-one derivatives as agonists of human constitutive androstane receptor. Biochem Pharmacol 2008;76:1288–97.CrossrefGoogle Scholar

  • 60.

    Dring AM, Anderson LE, Qamar S, Stoner MA. Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem Biol Interact 2010;188:512–25.Google Scholar

  • 61.

    Jyrkkärinne J, Windshügel B, Rönkkö T, Tervo AJ, Küblbeck J, Lahtela-Kakkonen M, et al. Insights into ligand-elicited activation of human constitutive androstane receptor based on novel agonists and three-dimensional quantitative structure-activity relationship. J Med Chem 2008;51:7181–92.CrossrefGoogle Scholar

  • 62.

    Burk O, Piedade R, Ghebreghiorghis L, Fait JT, Nussler AK, Gil JP, et al. Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoforms. Br J Pharmacol 2012; 167:666–81.Google Scholar

  • 63.

    Lynch C, Pan Y, Li L, Ferguson SS, Xia M, Swaan PW, et al. Identification of novel activators of constitutive androstane receptor from FDA-approved drugs by integrated computational and biological approaches. Pharm Res 2013;30:489–501.CrossrefGoogle Scholar

  • 64.

    Ekins S, Reschly EJ, Hagey LR, Krasowski MD. Evolution of pharmacologic specificity in the pregnane X receptor. BMC Evol Biol 2008;8:103.CrossrefGoogle Scholar

  • 65.

    Handschin C, Podvinec M, Meyer UA. CXR, a chicken xenobiotic-sensing orphan nuclear receptor, is related to both mammalian pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Proc Natl Acad Sci USA 2000;97:10769–74.CrossrefGoogle Scholar

  • 66.

    Lindblom TH, Pierce GJ, Sluder AE. A C. elegans orphan nuclear receptor contributes to xenobiotic resistance. Curr Biol 2001;11:864–8.CrossrefGoogle Scholar

  • 67.

    Maglich JM, Caravella JA, Lambert MH, Willson TM, Moore JT, Ramamurthy L. The first completed genome sequence from a teleost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily. Nucleic Acids Res 2003;31:4051–8.CrossrefGoogle Scholar

  • 68.

    Makino T, McLysaght A. Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci USA 2010;107:9270–4.CrossrefGoogle Scholar

  • 69.

    Mathäs M, Burk O, Qiu H, Nusshag C, Gödtel-Armbrust U, Baranyai D, et al. Evolutionary history and functional characterization of the amphibian xenosensor CAR. Mol Endocrinol 2012;26:14–26.CrossrefGoogle Scholar

  • 70.

    Krasowski MD, Yasuda K, Hagey LR, Schuetz EG. Evolution of the pregnane X receptor: adaptation to cross-species differences in biliary bile salts. Mol Endocrinol 2005;19:1720–39.CrossrefGoogle Scholar

  • 71.

    Krasowski MD, Yasuda K, Hagey LR, Schuetz EG. Evolutionary selection across the nuclear hormone receptor superfamily with a focus on the NR1I subfamily (vitamin D, pregnane X, and constitutive androstane receptors). Nucl Receptor 2005;3:2.CrossrefGoogle Scholar

  • 72.

    Yoshinari K, Sueyoshi T, Moore R, Negishi M. Nuclear receptor CAR as a regulatory factor for the sexually dimorphic induction of CYB2B1 gene by phenobarbital in rat livers. Mol Pharmacol 2001;59:278–84.Google Scholar

  • 73.

    Omiecinski CJ, Coslo DM, Chen T, Laurenzana EM, Peffer RC. Multi-species analyses of direct activators of the constitutive androstane receptor. Toxicol Sci 2011;123:550–62.CrossrefGoogle Scholar

  • 74.

    Arnold KA, Eichelbaum M, Burk O. Alternative splicing affects the function and tissue-specific expression of the human constitutive androstane receptor. Nucl Receptor 2004;2:1.CrossrefGoogle Scholar

  • 75.

    Lamba JK, Lamba V, Yasuda K, Lin YS, Assem M, Thompson E, et al. Expression of constitutive androstane receptor splice variants in human tissues and their functional consequences. J Pharmacol Exp Ther 2004;311:811–21.Google Scholar

  • 76.

    DeKeyser JG, Laurenzana EM, Peterson EC, Chen T, Omiecinski CJ. Selective phthalate activation of naturally occurring human constitutive androstane receptor splice variants and the pregnane X receptor. Toxicol Sci 2011;120:381–91.CrossrefGoogle Scholar

  • 77.

    Auerbach SS, Ramsden R, Stoner MA, Verlinde C, Hassett C, Omiecinski CJ. Alternatively spliced isoforms of the human constitutive androstane receptor. Nucleic Acids Res 2003;31:3194–207.CrossrefGoogle Scholar

  • 78.

    Jinno H, Tanaka-Kagawa T, Hanioka N, Ishida S, Saeki M, Soyama A, et al. Identification of novel alternative splice variants of human constitutive androstane receptor and characterization of their expression in the liver. Mol Pharmacol 2004;65:496–502.CrossrefGoogle Scholar

  • 79.

    Faucette SR, Zhang T-C, Moore R, Sueyoshi T, Omiecinski CJ, LeCluyse EL, et al. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther 2007;320:72–80.Google Scholar

  • 80.

    Thompson EE, Kuttab-Boulos H, Krasowski MD, Di Rienzo A. Functional constraints on the constitutive androstane receptor inferred from human sequence variation and cross-species comparisons. Hum Genomics 2005;2:168–78.CrossrefGoogle Scholar

  • 81.

    Ikeda S, Kurose K, Jinno H, Sai K, Ozawa S, Hasegawa R, et al. Functional analysis of four naturally occurring variants of human constitutive androstane receptor. Mol Gen Metab 2005;86:314–9.CrossrefGoogle Scholar

  • 82.

    Swart M, Whitehorn H, Ren Y, Smith P, Ramesar RS, Dandara C. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med Genet 2012;13:112–23.CrossrefGoogle Scholar

  • 83.

    Cortes CP, Siccardi M, Chaikan A, Owen A, Zhang G, Porte CJ. Correlates of efavirenz exposure in Chilean patients affected with human immunodeficiency virus reveals a novel association with a polymorphism in the constitutive androstane receptor. Ther Drug Monitor 2013;35:78–83.CrossrefGoogle Scholar

  • 84.

    Turpeinen M, Zanger UM. Cytochrome P450 2B6: function, genetics, and clinical relevance. Drug Metabol Drug Interact 2012;27:185–97.Google Scholar

  • 85.

    Ding X, Lichti K, Kim I, Gonzalez FJ, Staudinger JL. Regulation of constitutive androstane receptor and its target genes by fasting, camp, hepatocyte nuclear factor alpha, and the coactivator peroxisome proliferator-activated receptor gamma coactivator-1α. J Biol Chem 2006;281:26540–51.Google Scholar

  • 86.

    Pascussi JM, Robert A, Moreau A, Ramos J, Bioulac-Sage P, Navarro F, et al. Differential regulation of constitutive androstane receptor expression by hepatocyte nuclear factor-4 alpha isoforms. Hepatology 2007;45:1146–53.CrossrefGoogle Scholar

  • 87.

    Pascussi JM, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ. Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation. Mol Pharmacol 2000;58:1441–50.Google Scholar

  • 88.

    Saito K, Kobayashi K, Mizuno Y, Fukuchi Y, Furihata T, Chiba K. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists induce constitutive androstane receptor (CAR) and cytochrome P450 2B in rat primary hepatocytes. Drug Metab Pharmacokinet 2010;25:108–11.Google Scholar

  • 89.

    Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002;62:638–46.CrossrefGoogle Scholar

  • 90.

    Ooe H, Kon J, Oshima H, Mitaka T. Thyroid hormone is necessary for expression of constitutive androstane receptor in rat hepatocytes. Drug Metab Dispos 2009;37:1963–9.CrossrefGoogle Scholar

  • 91.

    Osabe M, Sugatani J, Takemura A, Kurosawa M, Yamazaki Y, Ikari A, et al. Up-regulation of CAR expression through Elk-1 in HepG2 and SW480 cells by serum starvation stress. FEBS Lett 2009;583:885–9.Google Scholar

  • 92.

    Koike C, Moore R, Negishi M. Extracellular signal-regulated kinase is an endogenous signal retaining the nuclear constitutive active/androstane receptor (CAR) in the cytoplasm of mouse primary hepatocytes. Mol Pharmacol 2007;71: 1217–21.CrossrefGoogle Scholar

  • 93.

    Osabe M, Negishi M. Active ERK1/2 protein interacts with the phosphorylated nuclear constitutive active/androstane receptor (CAR; NR1I3), repressing dephosphorylation and sequestering CAR in the cytoplasm. J Biol Chem 2011;286:35763–9.Google Scholar

  • 94.

    Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper TFs DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 2006;4:25–36.CrossrefGoogle Scholar

  • 95.

    Kobayashi K, Sueyoshi T, Inoue K, Moore R, Negishi M. Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells. Mol Pharmacol 2003;64:1069–75.CrossrefGoogle Scholar

  • 96.

    Mutoh S, Osabe M, Inoue K, Moore R, Pedersen L, Perera L, et al. Dephosphorylation of threonine 38 is required for nuclear translocation and activation of human xenobiotic receptor CAR (NR1I3). J Biol Chem 2009;284:34785–92.Google Scholar

  • 97.

    Hosseinpour F, Moore R, Negishi M, Sueyoshi T. Serine 202 regulates the nuclear translocation of constitutive active/androstane receptor. Mol Pharmacol 2006;69:1095–102.Google Scholar

  • 98.

    Sueyoshi T, Moore R, Sugatani J, Matsumura Y, Negishi M. PPP1R16A, the membrane subunit of protein phosphatase 1β, signals nuclear translocation of the nuclear receptor constitutive active/androstane receptor. Mol Pharmacol 2008;73:1113–21.CrossrefGoogle Scholar

  • 99.

    Blättler SM, Rencurel F, Kaufmann MR, Meyer UA. In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci USA 2007;104:1045–50.CrossrefGoogle Scholar

  • 100.

    Chakraborty S, Kanakasabai S, Bright JJ. Constitutive androstane receptor agonist CITCO inhibits growth and expansion of brain tumour stem cells. Br J Cancer 2011;104:448–59.CrossrefGoogle Scholar

  • 101.

    Kamino H, Negishi M. The nuclear receptor constitutive active/androstane receptor arrests DNA-damaged human hepatocellular carcinoma Huh7 cells at the G2/M phase. Mol Carcinogen 2012;51:206–12.CrossrefGoogle Scholar

  • 102.

    Sidhu JS, Omiecinski CJ. cAMP-associated inhibition of phenobarbital-inducible cytochrome P450 gene expression in primary rat hepatocyte cultures. J Biol Chem 1995;270:12762–73.Google Scholar

  • 103.

    Honkakoski P, Negishi M. Protein serine/threonine phosphatase inhibitors suppress phenobarbital-induced Cyp2b10 gene transcription in mouse primary hepatocytes. Biochem J 1998;330:889–95.Google Scholar

  • 104.

    Ito S, Tsuda M, Yoshitake A, Yanai T, Masegi T. Effect of phenobarbital on hepatic gap junctional intercellular communication in rats. Toxicol Pathol 1998;26:253–9.CrossrefGoogle Scholar

  • 105.

    Warner KA, Fernstrom MJ, Ruch RJ. Inhibition of mouse hepatocyte gap junctional intercellular communication by phenobarbital correlates with strain-specific hepatocarcinogenesis. Toxicol Sci 2003;71:190–7.CrossrefGoogle Scholar

  • 106.

    Sugatani J, Sueyoshi T, Negishi M, Miwa M. Regulation of the human UGT1A1 gene by nuclear receptors constitutive active/androstane receptor, pregnane X receptor, and glucocorticoid receptor. Method Enzymol 2005;400:92–104.Google Scholar

  • 107.

    Goodwin B, Hodgson E, D’Costa DJ, Robertson GR, Liddle C. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 2002;62:359–65.CrossrefGoogle Scholar

  • 108.

    Mäkinen J, Frank C, Jyrkkärinne J, Gynther J, Carlberg C, Honkakoski P. Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors. Mol Pharmacol 2002;62:366–78.CrossrefGoogle Scholar

  • 109.

    Kassam A, Winrow CJ, Fernandez-Rachubinski F, Capone JP, Rachubinski RA. The peroxisome proliferator response element of the gene encoding the peroxisomal beta-oxidation enzyme enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase is a target for constitutive androstane receptor beta/9-cis-retinoic acid receptor-mediated transactivation. J Biol Chem 2000;275:4345–50.Google Scholar

  • 110.

    Miao J, Fang S, Bae Y, Kemper JK. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1α. J Biol Chem 2006;281:14537–46.Google Scholar

  • 111.

    Kachaylo EM, Yarushkin AA, Pustylnyak VO. Constitutive androstane receptor activation by 2,4,6-triphenyl-1,3-dioxane suppresses the expression of the gluconeogenic genes. Eur J Pharmacol 2012;679:139–43.Google Scholar

  • 112.

    Frank C, Gonzalez MM, Oinonen C, Dunlop TW, Carlberg C. Characterization of DNA complexes formed by the nuclear receptor constitutive androstane receptor. J Biol Chem 2003;278:43299–310.Google Scholar

  • 113.

    Burk O, Katja AA, Geick A, Tegude H, Eichelbaum M. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol Chem 2005;386:503–13.Google Scholar

  • 114.

    Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997;387:733–6.Google Scholar

  • 115.

    McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999;20:321–44.CrossrefGoogle Scholar

  • 116.

    Molnár F, Matilainen M, Carlberg C. Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 2005;280:26543–56.Google Scholar

  • 117.

    Xia J, Liao L, Sarkar J, Matsumoto K, Reddy JK, Xu J, et al. Redundant enhancement of mouse constitutive androstane receptor transactivation by p160 coactivator family members. Arch Biochem Biophys 2007;468:49–57.Google Scholar

  • 118.

    Choi E, Lee S, Yeom S-Y, Kim GH, Lee JW, Kim S-W. Characterization of activating signal cointegrator-2 as a novel transcriptional coactivator of the xenobiotic nuclear receptor constitutive androstane receptor. Mol Endocrinol 2005;19:1711–9.CrossrefGoogle Scholar

  • 119.

    Jia Y, Guo GL, Surapureddi S, Sarkar J, Qi C, Guo D, et al. Transcription coactivator peroxisome proliferator-activated receptor-binding protein/mediator 1 deficiency abrogates acetaminophen hepatotoxicity. Proc Natl Acad Sci USA 2005;102:12531–6.CrossrefGoogle Scholar

  • 120.

    Sarkar J, Qi C, Guo D, Ahmed MR, Jia Y, Usuda N, et al. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors pparalpha and CAR, the constitutive androstane receptor, in mouse liver. Gene Expression 2007;13:255–69.Google Scholar

  • 121.

    Guo D, Sarkar J, Ahmed MR, Viswakarma N, Jia Y, Yu S, et al. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver. Biochem Biophys Res Commun 2006;347:485–95.Google Scholar

  • 122.

    Malik S, Roeder RG. The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010;11:761–72.CrossrefGoogle Scholar

  • 123.

    Surapureddi S, Viswakarma N, Yu S, Guo D, Rao MS, Reddy JK. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex. Biochem Biophys Res Commun 2006;343:535–43.Google Scholar

  • 124.

    Shiraki T, Sakai N, Kanaya E, Jingami H. Activation of orphan nuclear constitutive androstane receptor requires subnuclear targeting by peroxisome proliferator-activated receptor-γ coactivator-1α. A possible link between xenobiotic response and nutritional state. J Biol Chem 2003;278:11344–50.Google Scholar

  • 125.

    Mäkinen J, Reinisalo M, Niemi K, Viitala P, Jyrkkärinne J, Chung H, et al. Dual action of oestrogens on the mouse constitutive androstane receptor. Biochem J 2003;376:465–72.Google Scholar

  • 126.

    Lempiäinen H, Molnár F, Macias Gonzalez M, Peräkylä M, Carlberg C. Antagonist- and inverse agonist-driven interactions of the vitamin D receptor and the constitutive androstane receptor with corepressor protein. Mol Endocrinol 2005;19:2258–72.CrossrefGoogle Scholar

  • 127.

    Konno Y, Kodama S, Moore R, Kamiya N, Negishi M. Nuclear xenobiotic receptor pregnane X receptor locks corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) onto the CYP24A1 promoter to attenuate vitamin D3 activation. Mol Pharmacol 2009;75:265–71.CrossrefGoogle Scholar

  • 128.

    Bae Y, Kemper JK, Kemper B. Repression of CAR-mediated transactivation of CYP2B genes by the orphan nuclear receptor, short heterodimer partner (SHP). DNA Cell Biol 2004;23:81–91.CrossrefGoogle Scholar

  • 129.

    Laurenzana EM, Chen T, Kannuswamy M, Sell BE, Strom SC, Li Y, et al. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3). Mol Pharmacol 2012;82:918–28.CrossrefGoogle Scholar

  • 130.

    Xie Y-B, Lee O-H, Nedumaran B, Seong H-A, Lee K-M, Ha H, et al. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation. Biochem J 2008;416:463–73.Google Scholar

  • 131.

    Xie Y-B, Nedumaran B, Choi H-S. Molecular characterization of SMILE as a novel corepressor of nuclear receptors. Nucleic Acids Res 2009;37:4100–15.CrossrefGoogle Scholar

  • 132.

    Lahtela JT, Arranto AJ, Sotaniemi EA. Enzyme inducers improve insulin sensitivity in non-insulin-dependent diabetic subjects. Diabetes 1985;34:911–6.CrossrefGoogle Scholar

  • 133.

    Argaud D, Halimi S, Catelloni F, Leverve XM. Inhibition of gluconeogenesis in isolated rat hepatocytes after chronic treatment with phenobarbital. Biochem J 1991;280:663–9.Google Scholar

  • 134.

    Gao J, He J, Zhai Y, Wada T, Xie W. The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J Biol Chem 2009;284:25984–92.Google Scholar

  • 135.

    Ledda-Columbano GM, Pibiri M, Loi R, Perra A, Shinozuka H, Columbano A. Early increase in cyclin D1 expression and accelerated entry of mouse hepatocytes into S phase after administration of the mitogen 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene. Am J Pathol 2000;156:91–7.CrossrefGoogle Scholar

  • 136.

    Yun HJ, Kwon J, Seol W. Specific inhibition of transcriptional activity of the constitutive androstane receptor (CAR) by the splicing factor SF3a. Biol Chem 2008;389:1313–8.Google Scholar

  • 137.

    Dau PT, Sakai H, Hirano M, Ishibashi H, Tanaka Y, Kameda K, et al. Quantitative analysis of the interaction of constitutive androstane receptor with chemicals and steroid receptor coactivator 1 using surface plasmon resonance biosensor systems: a case study of the baikal seal (Pusa sibirica) and the mouse. Toxicol Sci 2013;131:116–27.CrossrefGoogle Scholar

  • 138.

    Maglich JM, Parks DJ, Moore LB, Collins JL, Goodwin B, Billin AN, et al. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem 2003;278:17277–83.Google Scholar

  • 139.

    Abass K, Lämsä V, Reponen P, Küblbeck J, Honkakoski P, Mattila S, et al. Characterization of human cytochrome P450 induction by pesticides. Toxicology 2012;294:17–26.Google Scholar

  • 140.

    Huang W, Zhang J, Wei P, Schrader WT, Moore DD. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR. Mol Endocrinol 2004;18:2402–8.CrossrefGoogle Scholar

  • 141.

    Yao R, Yasuoka A, Kamei A, Kitagawa Y, Rogi T, Taieishi N, et al. Polyphenols in alcoholic beverages activating constitutive androstane receptor CAR. Biosci Biotechnol Biochem 2011;75:1635–7.CrossrefGoogle Scholar

  • 142.

    DeKeyser JG, Stagliano MC, Auerbach SS, Prabhu KS, Jones AD, Omiecinski CJ. Di(2-ethylhexyl)phthalate is a highly potent agonist for the human constitutive androstane receptor splice variant CAR2. Mol Pharmacol 2009;75:1005–13.Google Scholar

  • 143.

    Li L, Chen T, Stanton JD, Sueyoshi T, Negishi M, Wang H. The peripheral benzodiazepine receptor ligand 1-(2-chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide is a novel antagonist of human constitutive androstane receptor. Mol Pharmacol 2008;74:443–53.Google Scholar

  • 144.

    Kawamoto T, Kakizaki S, Yoshinari K, Negishi M. Estrogen activation of the nuclear orphan receptor CAR (constitutive active receptor) in induction of the mouse Cyp2b10 gene. Mol Endocrinol 2000;14:1897–905.CrossrefGoogle Scholar

  • 145.

    Yao R, Yasuoka A, Kamei A, Kitagawa Y, Tateishi N, Tsuruoka N, et al. Dietary flavonoids activate the constitutive androstane receptor (CAR). J Agric Food Chem 2010;58:2168–73.CrossrefGoogle Scholar

  • 146.

    Imai J, Yamazoe Y, Yoshinari K. Novel cell-based reporter assay system using epitope-tagged protein for the identification of agonistic ligands of constitutive androstane receptor (CAR). Drug Metab Pharmacokinet 2012. DOI: http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-112.Crossref

  • 147.

    Huang W, Zhang J, Chua SS, Qatanani M, Han Y, Granata R, et al. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc Natl Acad Sci USA 2003;100:4156–61.CrossrefGoogle Scholar

  • 148.

    Chen T, Tompkins LM, Li L, Li H, Kim G, Zheng Y, et al. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J Pharmacol Exp Ther 2010;332:106–15.Google Scholar

  • 149.

    Lau AJ, Yang G, Chang TK. Isoform-selective activation of human constitutive androstane receptor by Ginkgo biloba extract: functional analysis of the SV23, SV24, and SV25 splice variants. J Pharmacol Exp Ther 2011;339:704–15.Google Scholar

  • 150.

    Choi E-J, Jang Y-J, Cha E-Y, Shin J-G, Lee SS. Identification and characterization of novel alternative splice variants of human constitutive androstane receptor in liver samples of Koreans and Caucasians. Drug Metab Dispos 2013;41:888–96.CrossrefGoogle Scholar

  • 151.

    Tzameli I, Chua SS, Cheskis B, Moore DD. Complex effects of rexinoids on ligand dependent activation or inhibition of the xenobiotic receptor, CAR. Nucl Receptor 2003;1:2.CrossrefGoogle Scholar

  • 152.

    Chen S, Wang K, Wan Y-J. Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem Pharmacol 2010;79:270–6.CrossrefGoogle Scholar

  • 153.

    Howe K, Sanat F, Thumser AE, Coleman T, Plant N. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes. Xenobiotica 2011;41:519–29.CrossrefGoogle Scholar

  • 154.

    Kanno Y, Inouye Y. A consecutive three alanine residue insertion mutant of human CAR: a novel CAR ligand screening system in HepG2 cells. J Toxicol Sci 2010;35:515–25.Google Scholar

  • 155.

    Pissios P, Tzameli I, Kushner P, Moore DD. Dynamic stabilization of nuclear receptor ligand binding domains by hormone or corepressor binding. Mol Cell 2000;6:245–53.CrossrefGoogle Scholar

  • 156.

    Burk O, Arnold KA, Nussler AK, Schaeffeler E, Efimova E, Avery BA, et al. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol 2005;67:1954–65.CrossrefGoogle Scholar

  • 157.

    Kobayashi K, Saito K, Takagi S, Chiba K. Ligand-dependent assembly of pregnane X receptor, constitutive androstane receptor and liver X receptor is applicable to identify ligands. Drug Metab Lett 2010;4:88–94.CrossrefGoogle Scholar

  • 158.

    Li H, Chen T, Cottrell J, Wang H. Nuclear translocation of adenoviral-enhanced yellow fluorescent protein-tagged-human constitutive androstane receptor (hCAR): a novel tool for screening hCAR activators in human primary hepatocytes. Drug Metab Dispos 2009;37:1098–106.CrossrefGoogle Scholar

  • 159.

    Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 2000;275:15122–7.Google Scholar

About the article

Corresponding author: Paavo Honkakoski, School of Pharmacy, Faculty of Health Sciences and Biocenter Kuopio, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland, Phone: +358 40 355 2490


Received: 2013-02-01

Accepted: 2013-04-17

Published Online: 2013-05-13

Published in Print: 2013-06-01


Citation Information: Drug Metabolism and Drug Interactions, Volume 28, Issue 2, Pages 79–93, ISSN (Online) 2191-0162, ISSN (Print) 0792-5077, DOI: https://doi.org/10.1515/dmdi-2013-0009.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Manon Garcia, Laura Thirouard, Lauriane Sedès, Mélusine Monrose, Hélène Holota, Françoise Caira, David Volle, and Claude Beaudoin
International Journal of Molecular Sciences, 2018, Volume 19, Number 11, Page 3630
[2]
Alejandro Carazo, Jan Dusek, Ondrej Holas, Josef Skoda, Lucie Hyrsova, Tomas Smutny, Tomas Soukup, Martin Dosedel, and Petr Pávek
Frontiers in Pharmacology, 2018, Volume 9
[3]
Keiyu Oshida, Naresh Vasani, Carlton Jones, Tanya Moore, Susan Hester, Stephen Nesnow, Scott Auerbach, David R. Geter, Lauren M. Aleksunes, Russell S. Thomas, Dawn Applegate, Curtis D. Klaassen, and J. Christopher Corton
Nuclear Receptor Signaling, 2015, Volume 13, Number 1, Page nrs.13002
[4]
Tomoya Yamada, Yu Okuda, Masahiko Kushida, Kayo Sumida, Hayato Takeuchi, Hirohisa Nagahori, Takako Fukuda, Brian G. Lake, Samuel M. Cohen, and Satoshi Kawamura
Toxicological Sciences, 2014, Volume 142, Number 1, Page 137
[5]
Harutoshi Kato, Noriyuki Yamaotsu, Norihiko Iwazaki, Shigeaki Okamura, Toshiyuki Kume, and Shuichi Hirono
Drug Metabolism and Pharmacokinetics, 2017, Volume 32, Number 3, Page 179
[6]
David E. Amacher
Expert Opinion on Drug Metabolism & Toxicology, 2016, Volume 12, Number 12, Page 1463
[7]
Tomas Smutny, Alice Nova, Marcela Drechslerová, Alejandro Carazo, Lucie Hyrsova, Zuzana Rania Hrušková, Jiří Kuneš, Milan Pour, Marcel Špulák, and Petr Pavek
Journal of Medicinal Chemistry, 2016, Volume 59, Number 10, Page 4601
[8]
Nicola Groll, Tamara Petrikat, Silvia Vetter, Sabine Colnot, Frederik Weiss, Oliver Poetz, Thomas O. Joos, Ulrich Rothbauer, Michael Schwarz, and Albert Braeuning
Toxicology, 2016, Volume 350-352, Page 40
[9]
Wenwei Lin, Lei Yang, Sergio C. Chai, Yan Lu, and Taosheng Chen
European Journal of Medicinal Chemistry, 2016, Volume 108, Page 505
[10]
Jenni Küblbeck, Teemu Anttila, Juha T. Pulkkinen, and Paavo Honkakoski
Toxicology in Vitro, 2015, Volume 29, Number 7, Page 1759
[11]
Jenni Küblbeck, Vanessa Zancanella, Viktoria Prantner, Ferdinand Molnár, E. James Squires, Mauro Dacasto, Paavo Honkakoski, and Mery Giantin
Xenobiotica, 2016, Volume 46, Number 3, Page 200
[12]
Milu T Cherian, Sergio C Chai, and Taosheng Chen
Expert Opinion on Drug Metabolism & Toxicology, 2015, Volume 11, Number 7, Page 1099
[13]
Alejandro Carazo Fernández, Tomas Smutny, Lucie Hyrsová, Karel Berka, and Petr Pavek
Toxicology Letters, 2015, Volume 233, Number 2, Page 68
[14]
G.N. Belibasakis, K. Bao, and N. Bostanci
Molecular Oral Microbiology, 2014, Volume 29, Number 4, Page 174
[15]
Hui Yang and Hongbing Wang
Protein & Cell, 2014, Volume 5, Number 2, Page 113

Comments (0)

Please log in or register to comment.
Log in